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Abstract 

 

 

Use of tubular anaerobic digesters to treat livestock waste in developing countries has 

energy, agricultural, health, social and environmental benefits. However, careful use of digester 

effluent as a soil amendment is required due to the potential presence of protozoan parasites 

Cryptosporidium parvum and Giardia lamblia.  This research investigated the performance of 

four tubular digesters in the Monteverde region of Costa Rica.  High (>75%) volatile solids and 

BOD5 removal efficiencies were observed, which was attributed to the formation of a 

biologically active floccular sludge layer. Computational fluid dynamics (CFD) and bioprocess 

models were developed to evaluate the transport and transformation mechanisms in the digesters. 

The CFD model estimated a mean liquid hydraulic residence time (HRT) of 23 days and the 

bioprocess model estimated an average mean cell residence time (MCRT) of 115 days. 

Cryptosporidium parvum and Giardia lamblia inactivation studies were performed in the 

laboratory under conditions similar to the environmental conditions observed in the field tubular 

digesters. The environmental conditions included: ambient temperatures (21-24°C), neutral pH 

and total ammonia nitrogen (TAN) concentrations below 250 mg NH4
+-N/L. Inactivation rate 

constants for Cryptosporidium parvum and Giardia lamblia were 0.056 and 0.726 day-1, 

respectively. An (oo)cysts solid-liquid phase distribution study indicated that 70% of both 

(oo)cysts adhered to biosolids. A tubular digester model was used to estimate the concentration 

of viable (oo)cysts in the digester effluents. (Oo)cysts adhesion to solids, total solids 

concentration in the digester and HRT were the main factors contributing to the modeled effluent 
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concentration of viable (oo)cysts. Since the model predicted presence of viable (oo)cysts in the 

tubular digester effluent, a quantitative microbial risk assessment (QMRA) model was developed 

to estimate the risk of infection from exposure to raw livestock waste and tubular digester 

effluents in two rural communities in Costa Rica. The risk of infection from Cryptosporidium 

parvum and Giardia lamblia was assessed for occupational and public exposure pathways; 

fomite and soil contamination and crop contamination from runoff. Results from the QMRA 

indicated that the concentration of (oo)cysts in the raw livestock waste, inactivation rates at the 

various exposure pathways and the treatment of livestock waste were the main contributing 

factors to the risk of infection. This research indicated that treatment of livestock waste in tubular 

digesters significantly decreased the risk of infection to below WHO’s acceptable individual 

annual risk of infection (10-4). This is the first study to combine mathematical modeling with 

field studies to determine the physical and biological processes in tubular digesters. This is also 

the first study to combine mathematical models with field and laboratory studies to determine the 

concentration of (oo)cysts in tubular digester effluents and to predict the risk of infection from 

Cryptosporidium parvum and Giardia lamblia if tubular digester effluent is used as a soil 

amendment.  
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Chapter 1:  

 

Introduction 

 

Small-scale anaerobic digesters treating livestock in the developing world are an 

attractive waste management technology. Biogas produced from anaerobic digestion can be used 

to heat water or buildings, generate electricity, which can be used on site, or provide hours of 

cooking in developing world applications (Lüer, 2010). There are three commonly used small-

scale anaerobic digestion systems (fixed dome, floating drum and polyethylene tubular 

digesters), this research focused on tubular digesters because these systems do not require high 

levels of skilled labor to install, they are the easiest to operate, cost the least and can be operated 

at a variety of temperatures compared with the other digesters (Lüer, 2010). 

Anaerobic digestion effluent contains primary nutrients (nitrogen and phosphorus) that 

can be used as a soil amendment to improve plant growth. Although economically and 

environmentally attractive, land application of anaerobic digestion effluent has potential health 

impacts due to transmission of pathogens to food and water.  Protozoan parasites, 

Cryptosporidium parvum and Giardia lamblia, which are prevalent in livestock, were 

investigated in this study due to their high resistance to inactivation (Dufour et al., 2012). 

Apparently healthy livestock shed infective Cryptosporidium parvum oocysts and Giardia 

lamblia cysts that can be transmitted to humans through ingestion of soil, contaminated food and 

water (Erickson et al., 2006). Unfortunately, anaerobic digestion of wastewater does not 

effectively decrease the number of Cryptosporidium parvum and Giardia lamblia (oo)cysts to 
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below the infective dose (Chauret et al., 1999), thus escalating the probability of a health effect 

(infection, illness or death). Since anaerobic digestion of livestock waste for energy production 

followed by land application of the effluent as a soil amendment is practical and feasible, 

quantitative microbial risk assessment (QMRA) can be a useful tool in evaluating the probability 

of infection to these protozoan parasites (Haas et al., 1999). QMRA allows for estimating the 

risk/probability of infection from exposure to a pathogen. By carrying out a risk assessment, 

management practices that reduce transmission can be put in place to justify application of 

anaerobic digestion effluent.  

However, before carrying out a QMRA, the environmental conditions and the physical 

and biological processes in tubular digesters need to be understood. Exposing viable 

Cryptosporidium parvum and Giardia lamblia (oo)cysts to these factors influences the 

concentration of viable (oo)cysts in the tubular digester effluent. The concentration of viable 

(oo)cysts in the effluent concurrently affects the risk of infection to these parasites. The 

relationships between operating parameters, environmental conditions, physical and biological 

processes and the risk of infection are shown on Figure 1.1. 

No prior studies have estimated the risk of infection from Cryptosporidium parvum and 

Giardia lamblia (oo)cysts when effluents from small-scale tubular anaerobic digesters treating 

livestock waste are used as a soil amendment. The novelty of this research was the creation of 

tubular digester physical, biological, (oo)cysts inactivation and risk of infection models based on 

field and laboratory studies of small-scale tubular digesters treating livestock waste in the 

Monteverde region of Costa Rica.  

The following research questions and objectives were used to guide this dissertation 

research. Each research question was addressed in the subsequent chapters: 
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The first research question (Chapter 2) was how does the design, operation and maintenance of 

tubular digesters affect their performance in bio-energy production and livestock waste 

management in the developing world? 

• Provide a detailed literature review of the effect of substrate characteristics and operating 

parameters on the biochemical conditions in the tubular digesters. 

• Summarize how these environmental conditions in the tubular digesters translate to 

energy, environmental, agricultural, social and public health benefits. 

• Discuss policies promoting anaerobic digestion of livestock waste in developing 

countries. 

The second research question (Chapter 3) was what are the environmental conditions and 

physical and biological processes occurring in tubular digesters treating livestock waste? 

• Investigate the performance (biogas production and effluent quality) of and determine the 

environmental conditions in tubular digesters operated in a developing world setting. 

• Perform a hydrodynamic study and develop a physical model to understand the mixing 

and transport mechanisms in the tubular digesters. 

• Develop a bioprocess model to understand the biological mechanisms in the tubular 

digesters and determine how the physical and biological processes are related. 

The third research question (Chapter 4) was how do the environmental conditions and the 

physical and biological processes in tubular digesters treating livestock waste affect the fate and 

viability of Cryptosporidium parvum and Giardia lamblia (oo)cysts? 

• Investigate the inactivation rates of Cryptosporidium parvum and Giardia lamblia 

(oo)cysts under environmental conditions similar to those in field tubular digesters.  
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• Investigate adsorption of (oo)cysts to anaerobic digester biosolids under environmental 

conditions similar to those in field tubular digesters.   

• Develop a model that combines the (oo)cysts’ inactivation rates, adsorption of (oo)cysts 

to solids with the tubular digester physical processes to predict the concentration of 

viable (oo)cysts in the tubular digester effluent. 

The fourth research question (Chapter 5) was how does use of tubular digesters to treat livestock 

waste lower the risk of infection from Cryptosporidium parvum and Giardia lamblia (oo)cysts? 

• Establish occupational and public exposure pathways for two rural communities 

generating livestock waste.  

• Develop a QMRA model that uses the predicted concentration of viable (oo)cysts in the 

tubular digester effluent to estimate the risk of infection at the established exposure 

pathways.  

• Compare the risk of infection between one community that uses tubular digesters to treat 

their livestock waste and another community that does not treat their livestock waste.  
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Figure 1.1: Relationship between operating parameters, environmental conditions, physical and 
biological processes, (oo)cysts inactivation and the risk of infection. 
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Chapter 2: 

 

Literature Review1 

2.1 Introduction 

Anaerobic digestion of livestock waste is a waste management method that can improve 

the quality of life for those in the developing world. Biogas produced from small-scale anaerobic 

digesters is most often used as a cooking fuel, but can also be used to heat water or buildings or 

generate electricity for on-site use (Westerman et al., 2008; Ferrer et al., 2009; Lüer, 2010; 

Ocwieja, 2010). Anaerobic digesters can also be a useful tool to mitigate deforestation by using 

biogas as opposed to firewood. This also results in decreased public health concerns, especially 

for women and children who are disproportionally affected by indoor air pollution due to cultural 

and social roles. In addition, effluent from anaerobic digestion contains primary nutrients 

(nitrogen, phosphorus, potassium), that have agronomic benefits if used as a soil amendment to 

improve plant growth. 

To achieve these energy, environmental, agronomic and public health benefits, it is 

critical to understand how small-scale anaerobic digesters treating livestock waste are operated in 

developing countries. There are three commonly used small-scale anaerobic systems: fixed 

dome, floating drum and polyethylene tubular digesters (Kossmann et al., 1999; Ocwieja, 2010; 

Kinyua, 2013). The choice of digester depends on cost and availability of construction material, 

temperature of the region, quantity of waste treated, operation and maintenance and skill level in 

                                                           
1 This chapter is adapted from a manuscript under review at Renewable and Sustainable Energy Reviews. Kinyua, 
M.N., Rowse, L., Ergas, S.J. “Review of Small-Scale Tubular Anaerobic Digesters Treating Livestock Waste in the 
Developing World"  
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the community. This review will only summarize research on small-scale tubular digesters 

treating livestock waste because these systems do not require high levels of skilled labor to 

install, they are the easiest to operate, cost the least and can operate at a variety of temperatures 

compared with the other digesters (Lüer, 2010). Understanding the effects of design and 

substrate characteristics, operating parameters (organic loading rate [OLR], temperature and 

retention time) can assist in estimating the performance of tubular digesters and thus justify their 

benefits.  

The aim of this review is to provide a detailed summary of the current and ongoing 

research on the design, operation, maintenance and performance of tubular digester treating 

livestock waste in the developing world. This review will focus on the effect of substrate 

characteristics and operating parameters on the biochemical conditions of the digesters and how 

these conditions translate to energy, environmental, agricultural, social and public health benefits 

and policies promoting anaerobic digestion of livestock waste. The link between these focus 

areas is demonstrated graphically in Figure 2.1. In addition to information from the literature, the 

authors’ observations of design, operation and maintenance of tubular digesters treating livestock 

waste as well as discussions with farmers and development workers in Monteverde, Costa Rica 

will also be incorporated into this review.  

2.2 Small-scale Tubular Anaerobic Digesters 

 The first plastic tubular digesters were installed in Colombia and Ethiopia in the 1980s by 

Botero and Preston (1987). After visiting the installed plastic tubular digesters in Colombia in 

1992, a Vietnamese group designed a tubular digester using a polyethylene tube and PVC piping. 

This new design had a lower capital cost compared with using plastic bags. By 1995, more than 

800 polyethylene tubular digesters were installed in Vietnam and 100 in Tanzania (An et al., 
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1997). This type of digester is now commonly referred to as the Taiwanese-model, double 

tubular polyethylene bag digester. In this review, it will be referred to as simply a tubular 

digester.  

The side view of a typical tubular digester is shown in Figure 2.2. The length of these 

digesters can vary from 8m to as long as 40m, with a circumference of 3.6-5m (Lansing et al., 

2007; Eaton, 2009). Generally the total volume ranges from 2.4 to 12m3, with approximately 

75% of the total being working (liquid) volume (Martí-Herrero, 2011; Rajendran et al., 2012). 

The polyethylene tube is placed in a 2.0-5.0% slope deep trench (Fig. 2.2) to provide support for 

the weight of the slurry.  Inlet and outlet pipes are installed at a 45° angle to maintain equal 

influent and effluent flows (An et al., 1997). In Costa Rica, a combined grit and flotation 

chamber is constructed upstream of the inlet section to remove large solid material, such as 

uneaten animal feed, sand and gravel, that are not biodegradable and can cause wear and tear on 

the system. 

Roof shelters are often used to protect the polyethylene tube from UV radiation and to 

regulate the temperature inside the digester, due to ambient temperature fluctuations (An et al., 

1997; Garfí et al., 2011). Commonly used roof shapes are gable, shed and dome. Depending on 

the amount of funds available, a polyethylene biogas storage bag can also be installed above the 

digester. Figure 2.2a is a photograph of a tubular digester with a biogas storage bag and Figure 

2.2b is a tubular digester without a biogas storage bag. Both images are from digesters installed 

in the Monteverde region of Costa Rica and are used to treat swine and cow waste. The biogas 

pipe (Figure. 2.1) flows into a safety valve that keeps air from getting into the digester or biogas 

storage bag while providing an escape for excess biogas (An et al., 1997). Methane’s (CH4) 

greenhouse gas (GHG) potential is 21-24 times greater than carbon dioxide (CO2), users are 
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therefore recommended to burn off excess biogas to avoid higher GHG emissions. Biogas 

contains CH4, CO2 and traces of H2S. Combustion of H2S forms sulfur dioxide, which can cause 

respiratory diseases such as emphysema and bronchitis (EPA, 2014). H2S is also a corrosive gas 

that can reduce the life-span of metal cook stoves. Its rotten eggs smell is also not aesthetically 

pleasing to users of the biogas when cooking (Lüer, 2010). It is recommended to place iron steel 

wool inside the biogas pipe to scrub the hydrogen sulfide (H2S) from the biogas, as shown in 

Equation 2.1 (Magomnang and Villanueva, 2014): 

Fe2O3 + 3H2S � 2Fe2S3 + 6H2O (Eq 2.1) 

Iron oxide reacts with H2S to form iron sulfide that is not corrosive or toxic. However, scrubbing 

of the biogas can be dangerous if a leak in the biogas storage bag or biogas pipe is not easily 

detected due to lack of odor (Rowse, 2012).  

2.3 Operation of Tubular Anaerobic Digesters 

Anaerobic digestion is carried out by different groups of microbes in four main steps: 

1. Fermentation - Fermenting bacteria hydrolyze complex insoluble molecules, such as proteins, 

carbohydrates, and lipids, into simpler soluble organic compounds. 

2. Acidogenesis – Acidogens utilize the simple soluble organic compounds such amino acids, 

sugars, alcohols, and fatty acids to produce volatile fatty acids (VFA). 

3. Acetogenesis – Acetogens utilize VFAs to produce acetate, H2, and CO2. 

4. Methanogenesis – Methanogens produce CH4 by consuming acetate, H2, and CO2 

A syntrophic relationship between the different groups of microbes is vital for the anaerobic 

digestion process to be successful. For example, if the growth rate of fermenting bacteria is low, 

the rates of acidogenesis, acetogenesis and methanogenesis are decreased. In this scenario, 

hydrolysis is the rate limiting step leading to decreased biogas and CH4 production.  
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Substrate characteristics (type of manure), operating parameters and chemical conditions 

in the digester affect the complex anaerobic microbial dynamics. Microbial dynamics in turn 

affect the overall performance of the system. Operating parameters include; temperature, 

retention time, and organic loading rate (OLR). Retention time includes hydraulic retention time 

(HRT) and solids retention time (SRT). Chemical conditions include; alkalinity, pH, total 

ammonia nitrogen (TAN) and VFA concentrations. Chemical conditions are controlled by the 

substrate characteristics and operating parameters. In industrial-scale anaerobic digestion 

systems, chemical conditions are often controlled by addition of acids or bases to control pH and 

alkalinity, providing heating and mixing or adjusting the OLR to control TAN or VFA inhibition 

(Gerardi, 2003). It is unlikely that households using small-scale tubular digesters can monitor 

and control the chemical conditions, therefore, only the substrate characteristics and operating 

parameters will be discussed in this review. A summary of the substrates and operating 

parameters used in countries in Africa, Asia and South and Central America are provided in 

Table 2.1.   

2.3.1 Substrate Characteristics 

Livestock manures commonly used as substrate for small-scale tubular digesters in the 

developing world include swine, cow, guinea pig, sheep, llama and buffalo (Table 2.1). The 

organic portion of livestock manure contains complex insoluble molecules, such as proteins, 

carbohydrates, and lipids that are converted to simpler soluble organic compounds. During 

hydrolysis, recalcitrant compounds in the substrates, such as cell walls, lignin and cellulose, are 

also degraded. However, fermenting bacteria degrade these compounds at a much slower rate 

because the extracellular enzymes that catalyze hydrolysis have a difficult time penetrating the 

lignocellulosic and hemicellulosic structures of these compounds (Converti et al., 1997). 
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The hydrolysis rate is affected by the fraction of recalcitrant compounds in the volatile 

solids (VS), therefore, it is important to know the concentration of these compounds based on the 

animal. The percent fraction of lignin, cellulose and hemicelluloses in the VS concentration of 

poultry, swine and cow manure is illustrated in Table 2.2 (USDA, 2008). Cow manure has the 

highest average concentration of recalcitrant compounds. Cows utilize a large fraction of the 

carbohydrates available in their food for energy; this leaves mostly recalcitrant compounds in the 

manure (Andrén et al., 1999). Therefore, depending on the concentration of recalcitrant 

compounds in the manure, hydrolysis can be the rate limiting step in anaerobic digestion. 

Hydrolysis rates have been shown to affect CH4 production; when treating swine waste, 

hydrolysis rates ranging from 0.07-0.19gCOD/L-day were observed and CH4 production 

decreased with decreasing hydrolysis rates (Kinyua et al., 2014).  

To increase biogas production, different additives, such as human waste (Galvin, 2013), 

slaughter house waste (blood, rumen, meat) (Guyana Energy Agency, 2012; Vögeli et al., 2014), 

molasses (Guyana Energy Agency, 2012), fats, oils and grease (FOG) (Lansing et al., 2010), 

crop residues such as cassava peels (Adeyanju, 2008) and coffee hulls (Kivaisi, 2004) and 

domestic solid wastes (Vögeli et al., 2014) have been used. Addition of these energy rich organic 

wastes increases biogas production because they are readily biodegraded by anaerobic microbes. 

(Cirne et al., 2007). Careful addition of additives has to be considered (Cirne et al., 2007; 

Lansing et al., 2010). For example, FOG are mainly composed of long chain fatty acids (LCFA) 

that can substantially increase biogas production. However, LCFA can lead to decreased biogas 

production by (1) coating the methanogens cells’ which reduces substrate uptake and biogas 

release and (2) causing sludge flotation and digester foaming leading to washout of anaerobic 

microbes (Long et al., 2012).  
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 Livestock manures also differ in terms of nitrogen, phosphorus and potassium content. 

The nitrogen, phosphorus and potassium characteristics of manure excreted by swine, cows and 

poultry are illustrated in Table 2.2 (Choi, 2007; USDA, 2008). The term excreted refers to both 

the feces and urine before dilution or treatment. Compared with the other manure substrates, 

swine manure has the highest concentration of nitrogen. To promote growth and carcass 

leanness, pigs are fed a diet rich in protein (Kerr and Easter, 1995). Of this high nitrogen diet, 

20% is excreted as feces and 50% as urine. The organic nitrogen fraction in the feces is slowly 

biodegradable, while the fraction in the urine is readily metabolized into TAN (Cahn et al., 

1998). Ammonification occurs during anaerobic digestion, generating TAN (ionized ammonium 

(NH4
+) + free ammonia (NH3)) (Im and Gi, 2011; Tchobanoglous et al., 2003). An increase in 

temperature can increase the rate of ammonification due to increased microbial growth rates, as 

discussed below.  Increased TAN concentrations may lead to decreased CH4 yields because 

methanogens are susceptible to TAN inhibition especially when TAN is in the form of free 

ammonia. Free ammonia diffuses into the cellular membrane disrupting the microbial pH, energy 

requirements and enzyme kinetics (Wittmann et al., 1995).  Although inhibitory TAN 

concentrations vary in the literature, generally maintaining TAN concentrations below 1.5g/L 

and pH between 6.8-7.4 will reduce TAN inhibition (Angelidaki and Ahring 1993; Troyer et al., 

1997; Zhang et al., 1997; Hansen et al., 1998; Magbanua et al., 2001; Kaparaju and Rintala, 

2005; Kinyua, 2013). TAN concentrations and pH values measured in tubular digesters in the 

developing world are shown in Table 2.1. Even though most digesters have pH values greater 

than 7.4, the digesters operate with TAN concentrations below 1.5g/L. 
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2.3.2 Temperature 

Temperature is an important operating parameter because substrate utilization and 

microbial growth rates are affected by temperature. Microbes transport nutrients in and out of the 

cell through their cellular membrane. As temperatures decrease, the membrane becomes stiff, 

causing a decrease in the transport of nutrients (Nedwell, 1999). Anaerobic microbes are 

sensitive to changes in temperature as small as 1-3°C (Gerardi, 2003). A change in temperature 

affects the stability of fermenting bacteria. This change in stability may lead to decreased growth 

rates, pH changes and decreased CH4 yields (Visser et al., 1993; Dohányos and Zábranská, 

2001). Common anaerobic digestion temperature settings are psychrophilic (0-15°C), mesophilic 

(30-37°C) and thermophilic (50-60°C). However, anaerobic microbes can survive at 

temperatures between 0 and 82°C (Tchobanoglous et al., 2003). To achieve thermophilic 

temperatures, complex heat exchange systems are required and therefore have not been reported 

in small-scale tubular digester systems. Most tubular digesters in the developing world operate at 

ambient temperatures of 15-30°C (Table 2.1). This range is considered to be at the high and low 

extremes of psychrophilic and mesophilic temperatures respectively (Amani et al., 2010).  

To maintain temperatures that are favorable to anaerobic microbes, tubular digesters were 

originally designed for use in tropical climates. However, through proper design, operation and 

maintenance, these systems have also been successfully used in high altitude temperate regions 

of South America (Alvarez and Lidén, 2009; Ferrer et al., 2011). As mentioned earlier, one such 

design is the use of greenhouse roofs. These roofs have been successful in maintaining favorable 

and stable temperature in tubular digesters even with fluctuations in the ambient temperature. 

To establish stable temperatures while treating guinea pig manure using a tubular digester 

in the Andean Plateau of Peru, Garfí et al. (2011) investigated the effect of two roof shelters 
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(shed roof and dome roof) on biogas production. The digester with the shed roof shelter had 

significantly lower temperatures and biogas production however, the effluent characteristics 

were similar in both digesters. Although the authors did not specify why the shed roof had lower 

temperatures, it is likely that the dome roof has a greater surface area compared to the angled 

shed roof. Angling the shed roof towards or away from the sun may have also caused this 

difference.  

2.3.3 Retention Time 

HRT is the average time the liquid fraction of the waste is in the system and the mean cell 

residence time (MCRT), also known as SRT, is the average time the microorganisms are in the 

system. HRT (day) is approximated by the total volume of the digester (V; m3) divided by the 

influent flow rate (Q; m3/day):  

HRT =  �
�  

   (Eq 2.2) 

SRT (day) is measured as the total biomass in the digester (X; kg/m3) divided by the biomass 

wasted per day (Xef; kg/m3) (Tchobanoglous et al., 2003): 

SRT =  ����	

 �� �
� ����
���
����	

 �	
��� ���� �
� ����
��� = � �

� ���
 (Eq 2.3) 

In systems with no solids separation and recycling, SRT is normally equal to the HRT. Although 

small-scale tubular digesters do not have solids separation or recycling, the SRT in these 

digesters may not be equal to the HRT. During field studies of tubular digesters in the 

Monteverde region of Costa Rica, we observed solids accumulation in the digesters, which led to 

SRTs greater than HRTs. For stable operation of the system, a HRT of at least twice the growth 

rate of the methanogens is required to avoid washout of this group of microorganisms. The 

design HRT is based on the growth rate of the methanogens because they are the slowest 

growing anaerobic microorganism (Shin et al., 2011).   
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Ambient temperatures and substrate characteristics also affect the required retention time 

in the digesters. In temperate climates, anaerobic microbes have slower growth rates. This 

decrease in growth rate requires an increase in digester volume or HRT to allow microbes to 

utilize substrates. For example, Ferrer et al. (2011) treated cow waste in cold climates and 

required a HRT of 60-90 days, while Usack et al. (2014), also treating cow waste in a tropical 

region needed a 3-4 times lower HRT.  

Correct estimation of HRT is required because HRT is related to digester volume. 

Although a decreased digester volume may reduce capital cost, the effluent quality and biogas 

production may decrease due to insufficient time for microorganisms to degrade the VS. Often, 

HRT is calculated by dividing the total digester volume; which includes the liquid and gas 

volume, with the influent flow rate. This is a common error; the actual HRT should be calculated 

by dividing the working liquid volume by the inflow flow rate (Martí-Herrero, 2011). Even if the 

working volume is used to estimate the HRT, the total volume is calculated by multiplying the 

cross-sectional area with the length of the bag, assuming that the working volume will not 

change. This however is not accurate, as the working volume in tubular digesters changes with 

time due to settling and accumulation of solids (Lansing et al., 2008; Ferrer et al., 2011; Usack et 

al., 2014).   

2.3.4 Organic Loading Rate 

If VS are the ‘fuel’ (substrate) for anaerobic microorganisms, OLR (kgVS/m3 digester 

volume/day) can be considered the digester’s process capacity and is equal to influent VS 

concentration (VSi; kgVS/m3) divided by the HRT (day): 

OLR =  ���
��� (Eq 2.4) 
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 There are two considerations that must be addressed when determining a digester’s OLR. First, 

as mentioned in the previous section, substrate characteristics, this affects the VS concentration 

and bioavailability. Second, the digester volume and influent and effluent flow rates. If a tubular 

digester is fed with an OLR greater than its capacity, acetogenic bacteria produce acetate faster 

than the methogens can utilize them, leading to decreased CH4 yields. On the other hand, OLRs 

lower than the system’s capacity does not provide anaerobic microbes enough substrate, leading 

to low biogas production (Kinyua et al., 2014). 

Optimal OLRs when treating cow and swine manure anaerobically at mesophilic 

temperatures are 2.5-3.5kgVS/m3-day and 3.0-3.5 kgVS/m3-day respectively (Burton and Turner, 

2003). However, it should be noted that these recommended values may not necessarily apply to 

small-scale tubular digesters. Most of these small-scale systems are operated at OLRs less than 

2.0 kgVS/m3-day (Table 2.1). This could be due to the operation temperatures lower than the 

mesophilic range (30-37°C) and the lack of mixing. Additionally, due to the simplicity of design 

it has been observed that loading rates greater than 2.8 kgVS/m3-day are more difficult to 

manually mix in feed tanks and don’t flow easily into the digester (An and Preston, 1999).  

2.4 Tubular Digester Benefits 

 Use of small-scale tubular digesters has a number of benefits including: (1) energy 

benefits, anaerobic digestion is a net-energy producing process. (2) Agricultural benefits as the 

digester effluent is rich in nutrients and can be used as soil amendment. (3) Environmental 

benefits by decreasing deforestation and mitigating water pollution from livestock waste. (4) 

Public health benefits because biogas combustion results in very low air pollution compared to 

combustion of firewood and livestock waste. Lastly, (5) social benefits by helping address 

gender inequalities.  
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2.4.1  Energy Benefits 

It was observed in Monteverde, Costa Rica that a frequent concern for a household or 

community with a tubular digester is how much biogas they will get. Although biogas production 

volume and rates are important, it is essential to compare the production rate with household 

energy requirements. The quality of biogas produced by small-scale tubular digesters will be 

considered in the form of heat energy. Electricity is a higher quality of energy compared to heat, 

but due to economic reasons, biogas from these systems is usually transferred to heat using 

biogas cook stoves (Bond and Templeton, 2011; Rutz et al., 2012). The biogas production rate is 

equal to the daily biogas volume produced (m3
biogas/day) divided by the volume of the digester: 

Biogas Production Rate =  �	��� ����	
  ��!�� "���!#�� 
$  (Eq 2.5) 

Biogas yield (m3
biogas/ kgVSadded) is dependent on the biogas production and OLR and expressed 

mathematically as:  

Biogas Yield =  %&'()* +,'-./0&'1 2)03 
452  (Eq 2.6) 

Potential biogas and CH4 yields produced for specific animals are summarized in Table 2.3. As 

mentioned previously, only a certain percentage of the influent VS are utilized in the anaerobic 

process depending on the animal. The volume of biogas and CH4 produced per animal per day 

can be approximated assuming animal specific biogas yields from the literature (Burton and 

Turner, 2003). This potential CH4 volume per animal per day can also be expressed as a heating 

value. Pure CH4 has a heating energy value of 11.2-18.6MJ/m3 CH4 (Speight, 1994). Biogas 

from tubular digesters has CH4 contents ranging from 21-76% (Table 2.1), resulting in potential 

heating energy values between 2.35 to 14.1MJ/m3 CH4. Potential heating energy production rates 

per day for various animal wastes are calculated in Table 2.3. The material of the cooking vessel 

and food being cooked affect the heating energy demands. To illustrate if the potential heating 
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energy production rates (Table 2.3) will meet a household’s demands’, the total heating energy 

required was calculated (Table 2.4). For this analysis it was assumed that water, rice, beans, 

potatoes and eggs, foods commonly eaten in the developing world, were boiled from 20 to 100°C 

in copper, aluminum, stainless steel, cast iron and clay vessels.   

To better illustrate the heating energy benefits of the biogas produced by tubular 

digesters, an example of a household that typically cooks rice and beans and owns sows will be 

used. A 200 kg sow can produce an average of 8.1 kg of excreta per day containing 0.74 kg VS 

(USDA, 2008). If 49% of the VS are utilized and the average biogas yields for sow waste are 

0.13-0.55 m3biogas/kgVS (Burton and Turner, 2003), the volume of biogas produced per animal 

can be approximately 0.03-0.28m3 biogas/day-animal. Assuming a CH4 content of 60%, this 

200kg sow can produce an average heating energy value of 1636 kJ/day. If a safety factor of 

40% is included to account for the cook stove’s combustion efficiency, the heating energy value 

would be 654kJ/animal-day. If a household wanted to boil 0.5kg of rice in a 0.5kg stainless steel 

cooking vessel in a 20°C room at sea level, the total heat energy required would be 355kJ. To 

boil 0.5kg of beans in the same stainless steel vessel, the heat energy required is 234kJ. The total 

heat energy required by this household to cook a meal of 0.5kg of rice and 0.5kg of beans is 

589kJ. In this hypothetical example, the tubular digester is producing enough biogas to meet the 

household’s cooking energy demands. This further justifies what was observed in households 

using biogas from tubular digesters in Monteverde, Costa Rica. Biogas produced from 2-4 pigs 

was enough for 3-4 hours of cooking for a household of 4-5 people. The households were also 

saving approximately $20 per month compared to other households that used propane for 

cooking.  
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2.4.2 Agricultural Benefits 

Anaerobic digestion effluent contains primary nutrients, nitrogen and phosphorus, and 

secondary nutrients, potassium, calcium and magnesium, and micro-nutrients, zinc, copper and 

iron. The roles of nitrogen and phosphorus during crop production are illustrated in Table 2.5. 

Only the primary nutrients will be discussed in this review. Nutrient rich effluent can be used as 

a soil amendment to improve plant growth. This is an environmentally and economically 

attractive alternative compared to the use of mineral fertilizers, the production of which 

consumes about 1.2% of the world’s energy and is responsible for about 1.2% of the world’s 

GHG emissions (Kongshaug, 1998). Effluents from anaerobic digesters also contain more 

inorganic nutrients that are available to plants compared to raw waste due to mineralization of 

organics during digestion (Arthurson, 2009). Agricultural benefits therefore encompass 

agronomic benefits (increased crop yield due to anaerobic digester effluent application) and 

economic benefits (monetary gain/profit). It is important to understand the balance of benefits to 

the people using the small-scale tubular digesters, the soil and plants (Adeli et al., 2005; 

Chantigny et al., 2008).  

2.4.2.1 Agronomic Benefits 

Agronomic benefits mainly refer to the use of the effluent to improve the soil fertility 

leading to increased crop yields. Anaerobic effluents treating livestock waste not only provide 

nutrients to the soil but also organic matter. Addition of organic matter from the effluent 

strengthens soil structure by promoting aggregation of soil granules by soil microorganisms. 

Increase of organic carbon lowers the carbon nitrogen (C/N) ratio of the soil (Bronick and Lal, 

2005). Application of stabilized manure has also been shown to increase soil’s total porosity by 

about 24% compared to mineral fertilizers (Marinari et al., 2000).  This is due to increased 
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microbial dehydrogenase activity (enzymatic removal of hydrogen from the soil), which is 

catalyzed by the organic matter in the effluent (Marinari et al., 2000). If applied before planting, 

effluents have been shown to assist in crop disease control. This phenomenon occurs when 

substrates, such as carbohydrates and lignin, in the effluent are utilized by the microbes in the 

soil. Through competition, antagonism and predation, biological disease control is achieved 

(Hoitink and Boehm, 1999).  

Nitrification is a naturally occurring biological process that occurs when TAN is applied 

to land. During the nitrification process, hydrogen ions are formed that contribute to soil acidity. 

At low pH levels (<5.5), the solubility of toxins, such as aluminum (Al) and manganese (Mn) 

naturally found in clay soils, increases.  Uptake of Al and Mn by plants results in root 

deterioration, discoloration, low yields and lack of growth. Soils therefore need buffering 

capacity to maintain the pH between 6.0 and 7.0. This buffering capacity can be provided by 

effluent with a neutral pH (Zhang and Raun, 2006). Garfí et al. (2011) found a significant 

difference in potato yields between soil fertilized with effluent from a tubular digester treating 

guinea pig waste and compost. The author noted a 27.5% increase in potato yield and attributed 

it to the nutrients present in the effluent. Chantigny et al. (2008) also credited micronutrient 

availability in increasing corn yield when comparing clay and loam soils fertilized with either 

mineral fertilizer or anaerobically digested swine effluent. 

To use effluent as a soil amendment, the fate of the nutrients during anaerobic digestion 

(Masse et al., 2007) has to be evaluated. During anaerobic digestion, organic matter in the waste 

is degraded to produce CH4 and CO2, thus lowering the effluent carbon to nitrogen (C/N) ratio 

and solids concentration. Garfí et al. (2011) reported that when treating guinea pig waste in Peru, 

the C/N ratio decreased from 17.0 in raw waste to 2.9 in the effluent. This reduced C/N ratio is 
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favorable because it reduces the competition for nitrogen between soil microorganisms and 

plants. TAN produced during anaerobic digestion can either be utilized by microorganisms for 

growth, form precipitates such as struvite or ammonium carbonate, and/or volatilize (Möller and 

Müller, 2012). In Sudan, Mubarak et al. (2010) also concluded that mineralization of nitrogen in 

cow, pig, goat, pigeon and camel manure increased soil quality. Mineralization also assists in 

solids reduction; lower solids concentrations decrease effluent viscosity, which increases 

permeation of inorganic nitrogen into the soil for faster plant uptake (Masse et al., 2007).  

Soils require both nitrogen and phosphorus, however, the natural supply of phosphorus 

for plants is usually low (Möller and Müller, 2012). Anaerobic digestion of livestock waste has 

been shown to increase the concentration of soluble phosphorus that can be easily taken up by 

plants, which increases the nitrogen to phosphorus (N/P) ratio (Masse et al., 2007). 

Mineralization of nitrogen, phosphorus and magnesium and increased pH during anaerobic 

digestion can lead to struvite precipitation (Equation 2.7), especially while treating swine waste, 

due to high concentrations of TAN and orthophosphates present (Loewenthal et al., 1995).  

Mg2+ + NH4
+ + H2PO4

- + 6H2O �MgNH4PO4.6H2O + 2H+ (Eq 2.7) 

Unfortunately, struvite precipitation during anaerobic digestion can be a problem due to fouling 

and clogging pipes (Marti et al., 2008), especially in tubular digesters that are already prone to 

solids accumulation and clogging due to their design. 

2.4.2.2 Economic Benefits 

More than 70% of people living in rural regions in the developing world depend on 

agriculture (FAO, 2011). Increased crop yield from using digester effluent may mean more crops 

available for sale. In Nepal for example, households observed an increase in crop production of 

up to 68% when digester effluent was used (Katuwal and Bohara, 2009). An economic analysis 

is important to link agronomic and economic benefits. Costs include fixed costs such the 
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construction of the digester, pipes, biogas stove and tractor depending on the farm size and 

operational costs include labor, maintenance, and reduced cost of fertilizer and cooking fuel 

(Park et al., 2010). Mineral fertilizer can cost about $76.3-313.7/ha which accounts for 39-85% 

of the cost depending on application rates and requirements. Digester effluent can cost about 

$29.8-85.3/ha also depending on the application rate. Digester construction, labor and repair 

costs account for most of the cost depending on type of manure and maintenance of the digester 

(Park et al., 2010). To reduce the labor cost for example, communities in Sudan constructed their 

own digesters (Omer and Fadalla, 2003). Since, effluents have higher crop yields and 

significantly lower total costs, the economic return is more attractive. There is little published 

literature on the economic benefits of tubular digesters therefore more research should be carried 

out in this topic.   

2.4.3 Environmental Benefits 

Environmental benefits that will be discussed in this section are reduction of 

deforestation and water pollution from livestock waste. It is important to understand how 

deforestation contributes to climate change and how tubular digester can be used to mitigate this 

issue. Understanding the link between mismanagement of livestock waste and water pollution is 

also critical in improving water sources for drinking, recreation, agriculture and fishing.  

2.4.3.1 Deforestation 

Deforestation is one of the causes of climate change. Deforestation accounts for about 

20% of GHG emissions from biofuel production and from expansion of land for agriculture and 

shelter. Carbon that is stored in the trees' biomass is released during biomass combustion and 

wood degradation (Palmer and Engel 2009; Bellassen and Luyssaert, 2014). Trees are also 

beneficial because they absorb CO2 from the atmosphere. The accumulation of GHG leads to 
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global temperature rise, which affects climate and hydrology. Decreased precipitation and water 

infiltration, results in soil erosion, which pollutes surface water, increases flooding, decreases 

biodiversity and soil quality, which lowers crop yield (Kaimowitz and Angelsen, 1998). 

Unfortunately, poor communities in the developing world are the most vulnerable to 

deforestation and climate change effects (Palmer and Engel 2009). For example in Haiti, 

population increase has lead to increased demand for firewood. This dependence on firewood has 

lead to severe deforestation leaving this country with only 1-2% of vegetation cover (ESMAP, 

2007). Deforestation in Haiti's countryside has led to adverse effects. Water pollution from soil 

runoff and low groundwater recharge has led to water shortages (Wampler and Sisson, 2011). 

Tubular digesters can assist in curbing deforestation and GHG impacts by providing a 

clean burning fuel. Installation of biogas systems has been shown to decrease dependence on 

firewood. In Nepal, Katuwal and Bohara (2009) observed a 53% decrease in firewood use after 

installing biogas systems. In Sub-Saharan Africa, use of biogas from anaerobic systems has been 

estimated to decrease deforestation by 26% by 2030 (Subedi et al., 2014). Although tubular 

digesters are beneficial in mitigating deforestation, a lack of knowledge and education on the 

link between climate change, deforestation and firewood use prevent further adaptation of the 

technology. This is because communities in the developing world consider firewood as a “free” 

fuel (Schlag and Zuzarte, 2008).  

2.4.3.2 Water Pollution from Livestock Waste 

Lack of proper livestock waste management leads to runoff of waste into water bodies 

and groundwater pollution. Untreated livestock waste contains a number of different pollutants 

of concern that are summarized in Table 2.6. Use of a tubular digester can mitigate some of these 

water pollutants of concern. During anaerobic digestion, the organic matter in the waste is 
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degraded to produce biogas that is a renewable energy source.  The concentration of suspended 

solids is also decreased during the anaerobic digestion process. Lansing et al. (2008) treating 

swine waste in Costa Rica observed biochemical oxygen demand (BOD) and total suspended 

solids removals of 79 and 86%, respectively. Usack et al. (2014) treating dairy waste in 

Indonesia observed chemical oxygen demand (COD) and total solids removals of approximately 

65 and 31%, respectively. These results show that the tubular digesters systems can be beneficial 

in reducing water pollution. Although the process of anaerobic digestion does not reduce the 

concentration of nitrogen and phosphorus, the waste is stabilized and can be used as a fertilizer, 

as mentioned previously (Marinari et al., 2000). However, farmers need to implement best 

management practices to control runoff. Some of these practices include: (1) a vegetation filter 

strip between the fields and water bodies, (2) a water and sediment drainage basin that receives 

agricultural runoff, (3) constructed wetlands and (4) duckweed and fish ponds (Miller et al., 

2012). 

According to WHO, Cryptosporidium parvum, Giardia lamblia, Campylobacter jejuni, 

Salmonella sp. and E. coli O157 are the main zoonotic pathogens that cause illness to humans. 

Livestock waste contains high loads of these pathogens especially for protozoan parasites. There 

is limited research on the inactivation of these pathogens during livestock waste treatment in 

tubular digesters in the developing world. Garfi et al. (2011) measured total coliforms and E.coli 

while treating guinea-pig waste (Table 2.1). In this study, negligible removal of these pathogens 

was observed. Masse et al. (2011) investigated the fate of total and fecal coliforms, E. coli, 

Salmonella, Campylobacter spp., and Y. enterocolitica in a 24°C farm scale sequencing batch 

anaerobic reactor operated at HRTs of 7 and 14 days. At both HRT values, a significant decrease 

of these pathogens was observed. Differences in results from Garfi et al. (2011) and Masse et al. 
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(2011) are unknown; indicating further research is needed on how the design, operation and 

maintenance of tubular digesters affect the fate of pathogens. Cote et al. (2006) treated swine 

waste in a 20°C anaerobic sequencing batch reactor with a 20 day SRT and observed level of 

Salmonella, Cryptosporidium parvum oocysts and Giardia lamblia cysts below the detection 

limits in the effluent. This study did not explicitly indicate an inactivation mechanism; instead 

they mentioned that there was removal of pathogens which may be due to a physical removal 

process. Furthermore, the study did not analyze the viability of Cryptosporidium parvum and 

Giardia lamblia (oo)cysts which is vital in determining their infectivity. Therefore, more 

research is needed to determine the viability of Cryptosporidium parvum and Giardia lamblia 

(oo)cysts during livestock waste treatment in tubular digesters. 

2.4.4 Social Benefits  

Social benefits in this review are in regards to increasing gender equality. Due to cultural 

and social roles, women provide unpaid household labor by providing human energy in survival 

activities. Survival activities include; collection of firewood, water collection and food 

preparation. This human energy is undervalued when nations report their economic 

contributions. For example, in India, women spend about 9 hours per day on survival activities 

while men spend 5 hours per day (Cecelski, 2000). According to the International Labor Office 

firewood collection is the most time-consuming survival activity for women in rural villages in 

Peru, Ghana, Mozambique, India and Indonesia (Cecelski, 1987). In rural Nepal, women who 

utilize firewood as cooking fuel spent about 4 hours per day searching for firewood, usually over 

long distances (Katuwal and Bohara, 2009). Once anaerobic digestion systems were installed, 

33% of the women spent their time participating in social and community activities. This saved 

the women up to 3 hours each day, time that was otherwise spent searching for firewood 
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(Gautam et al., 2009; Katuwal and Bohara, 2009). In same study, the 111,000 anaerobic digester 

systems installed translated to 35,000 woman hours per year (Gautam et al., 2009). Tubular 

digesters can reduce the need to spend hours per day searching for firewood. Household 

members, particularly women and girls, can use that time saved in income generating activities. 

Some of these activities reported include beer brewing in Burkina Faso and Tanzania, bakeries in 

Kenya and Peru, shea butter production in the Sahel region of Africa, soap making in 

Bangladesh, tea shops in Nepal and pottery making (Cecelski, 2000). The health of women and 

girls is also improved. This will be discussed in the section below. Therefore, tubular digesters 

can assist in empowering women by decreasing gender inequality. Incidence of disease and 

decreased time demands for women are positive outcomes; however, according to Cecelski 

(2000), seeking integrated approaches and various solutions is important in empowering women 

with respect to providing renewable energy choices for cooking. 

2.4.5 Public Health Benefits 

Millions of children die in the developing world due to exposure to indoor air pollution. 

Over reliance on firewood, coal and animal waste as a source of fuel has lead to deteriorating 

indoor air quality from the production of particulate matter, carbon monoxide, sulfur dioxide, 

oxides of nitrogen and many other harmful byproducts from combustion of biomass. In Sub-

Saharan Africa, firewood is the predominant fuel source, especially in the rural places. In 

Tanzania, Uganda, Senegal, Zambia, Malawi, and Kenya, 96, 91, 89, 88, 96 and 88%, of rural 

households respectively, rely on firewood as their main fuel source (Schlag and Zuzarte, 2008). 

Women and children under the age of 5 are especially affected by indoor air pollution (WHO, 

2007a). Indoor air pollution leads to acute lower and upper respiratory infections, chronic 

pulmonary disease, leading to lung fibroids and bronchiectasis, asthma, infant mortality, low 
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birth weight and eye infections (Ritz and Yu, 1999; Ezzati and Kammen, 2001; WHO, 2007a). 

Bonte  (1974) showed that there were more deaths and hospitalizations of people in Kenya with 

respiratory complications compared to those caused by malaria. However, very little attention 

has been paid on how to deal with the causes of respiratory diseases in the developing world 

(Ezzati and Kammen, 2002).  

Programs targeted at reducing or curbing the sources of indoor air pollution have shown 

to be successful at reducing the frequency of respiratory diseases in Brazil (Ribeiro and Cardoso, 

2003).  Such programs rely heavily on improving energy sources. As of 2002, 81% of the 

population in Nepal used solid biofuels, leading to 4820 deaths due to acute lower respiratory 

infections (ALRI) for children under the age of 5 and 2680 deaths due to chronic obstructive 

pulmonary disease (COPD) for people older than 30 years (WHO, 2007b). To assist with this 

situation, the Biogas Support Program (BSP-Nepal) organization was formed in 2003. Biogas 

systems were installed and the public health impacts of biogas systems were analyzed using the 

Biogas User Survey 2007/2008. Eye infections, respiratory disease, coughing and headaches 

were decreased in women, men and children who used biogas. The health improvements were 

especially significant for women, who reported a 40% reduction in eye infections and headaches 

and a 25% reduction in respiratory disease and coughing (Katuwal and Bohara, 2009).  

2.5 Policies Promoting Anaerobic Digestion of Livestock Waste 

Due to the benefits outlined above, small-scale tubular digesters have been adopted in 

many developing countries. However, financial obstacles, such as lack of capital and credit have 

prevented widespread adoption of the technology (Laichena and Wafula, 1997). Lack of local 

demand for biogas as an energy source due to other cheaper energy sources also decreases 

adoption of tubular digesters. In spite of India’s large livestock waste production, there is a lack 
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of demand for its collection and transformation to energy (UNEP, 2010). Therefore, to overcome 

these obstacles developing country communities, national and local governments, funding 

agencies and development organizations need to provide funding and technical assistance for 

technology transfer to be successful. This includes:  

1. Promotion of biogas as a renewable energy source on a country level,  

2. Encouraging country-driven efforts and access to funding,  

3. A shift from project-driven to programmatic-driven approaches and  

4. Providing activities that are relevant to climate change and the millennium development 

goals (UNEP, 2010).  

To promote the market for biogas as a renewable energy source, nation specific programs and 

policies can be developed. These programs may include, cash grants, subsidies or loans. In 

developed countries, such as the United States, the federal government provides stimulus 

packages that encourage farmers to produce energy from their livestock waste, such as the 

American Recovery and Reinvestment Act of 2009. These kinds of policies have also been used 

in developing countries to promote biogas technologies.  

In the People's Republic of China (PRC) an increase in population led to increased 

livestock production, which resulted in increased water pollution from disposal of untreated 

livestock waste. In 2006, the PRC passed the Renewable Energy Law to promote national biogas 

development, which encouraged the Efficient Utilization of Agricultural Wastes project. The 

main goals of this project were to improve the lives of those living in rural households, to 

improve the environment and to promote sustainable agriculture. The government of PRC 

received a loan from the Asian Development Bank (ADB) and a grant from the Global 

Environment Facility to provide $77.3 million. The 2 year project targeted 4 rural disadvantaged 
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provinces (Henan, Hubei, Jiangxi, and Shanxi). The project led to construction of biogas systems 

that produced 600-87,600m3 of biogas per year and served more than 19,000 households. Funds 

for implementing the digesters were dispersed from the Ministry of Finance to the provincial, 

municipal, township finance offices and finally to the village economic cooperatives that loaned 

the money to farmers. The loans had approximately a 10 year repayment plan with an average of 

7.2% interest rate based on a 15 year life of the digester. The project led to an average of $1,390 

annual increase in household income, an 88% reduction in combustion of biomass for fuel, a 

64% reduction of time spent by women to cook and a 75% increase in health in households that 

used the biogas systems. Future recommendations for this type of project included, increased 

monitoring of digester effluent to reduce runoff, monitoring rural economic growth to further 

justify impact on quality of life for users and developing revolving funds so that ADB and the 

government of PRC can increase the project's impact (ADB, 2010). This project in the PRC 

demonstrates how promotion of biogas on a country level through policies, activities relevant to 

millennium development goals and a programmatic approach can be successful.  

Collaborations between development banks, governments and micro-finance cooperatives 

can improve the environment and quality of life for their citizens through implementation of 

digesters. In Nepal, government subsidies lowered the capital cost of implementing digesters, 

leading to the government surpassing their goal of 800 digesters per year to 6,824 digesters in 

1992-1994 (Katuwal and Bohara, 2009). While in Cambodia, the National Biogas Programme 

(NBP), part of Cambodia's Ministry of Agriculture, began collaboration with the Netherlands 

Development Finance Company in 2007 to provide households with loans to build digesters. The 

loans are for 2 years with a 1.2% interest rate per month. As of 2013, approximately 19,200 

digesters had been installed (NBP, 2014).  
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Unfortunately, government policies, regulations and collaboration with organizations do 

not necessarily lead to successful implementation of biogas technologies. For example, the 

Haitian government has set environmental regulations to improve the country’s environment. 

The Haitian Environment Ministry is collaborating with the United States Senate Committee on 

Foreign Relations to finance Waste to Energy (WTE) projects (Booth et al., 2010). However, the 

widespread lack of education on the dangers of deforestation, corruption, political instability, 

lack of knowledge of the law, lack of accountability by the public sector and poor infrastructure 

make financing WTE projects difficult.  The National Renewable Energy Laboratory (NREL) is 

also working in Haiti on the implementation of biogas systems in the country; however, the 

process has been slow (Booth et al., 2010). This scenario is similar in other developing countries. 

More education and regular monitoring of environmental regulations and laws is needed to make 

financing of these projects easier by public and private sectors.  

2.6 Conclusions and Recommendations 

Tubular digesters are an efficient livestock waste treatment technology that generates 

biogas and a nutrient rich effluent.  For a tubular digester to meet a household's or communities' 

cooking energy needs, the substrate characteristics and operating parameters have to be 

understood for proper design of the system. Good performance of the tubular digester can then 

lead to several energy, environmental, public health, social and agricultural benefits. For 

communities to enjoy these benefits, several developing countries have implemented policies 

that educate and curb financial obstacles that limit widespread adoption of anaerobic digestion 

technologies of livestock waste. These policies can be used as examples for other developing 

countries governments seeking to improve the quality of life for their citizens.   
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Table 2.1: Summary of substrate characteristics, operating parameters and performance of tubular digesters installed in different 
regions of the developing world to treat livestock waste. 

Region Country 
Type of 

Manure 

TAN 

concentration 
pH 

Organic 

Loading 

Rate 

Retention 

Time 
Temperature Biogas Yield 

CH4 

content 
Reference 

   g NH4
+-N/L  

kg VS/ m3-
day 

Day °C 
m3 biogas/kg 

VSadded 
%  

Africa 
Egypt Water Buffalo n/a n/a 1.12 - 2.13 38, 58 and 95 17 - 22 0.04 - 0.16 43 - 66 

Hamad et 
al., 1982 

Tanzania Cow n/a n/a 0.33 - 3.93 19 - 23 n/a 0.07 - 0.32 62 - 76 
Cortsen et 
al., 1995 

Asia 

Vietnam Swine n/a 6.5 - 6.6 0.66 - 2.66 30 25 - 27 0.30 - 0.36 54 - 56 
An and 
Preston, 

1999 

Cambodia Swine 0.34 - 0.88 6.8 - 7.1 1.84 10 - 30 26 - 31 0.29 - 0.56 n/a 
Thy et al., 

2003 

Indonesia Cow n/a 7.3 - 7.7 2.00 21 27 0.14 - 0.15c 59 
Usack et 
al., 2014 

Central 
and 

South 
America 

Bolivia 
Cow, llama and 

sheep 
n/a 74 - 7.8 0.50 - 8.00 10, 20 and 30 18 and 25 0.013 - 0.19 21 - 61 

Alvarez 
and Lidén, 

2009 
Costa 
Rica 

Swine and 
grease 

1.14 - 1.39 6.9 - 7.2 0.50 - 1.41b 40 22 - 26 n/a 63 - 70 
Lansing et 
al., 2010 

Peru Cow 0.14 - 1.11a 7.7 - 8.3 0.67 - 1.00 60 - 90 20 - 25 0.35 63 - 67 
Ferrer et 
al., 2011 

Peru Guinea Pig 0.20 - 0.21 7.2 - 8.8 0.60 75 23 - 30 0.058 - 0.061 61 -73 
Garfi et al., 

2011 
a mg /g; b kg COD/m3-day; cm3 CH4/kg VSadded; n/a stands for not available 
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Table 2.2: Nutrient content and recalcitrant compounds in livestock manure (Müller, 1980; Choi, 2007; USDA, 2008). 

Parameter Unit Swine Cow Poultry 

Lignin % VS 2.2 - 16 7.9 - 10 3.4 - 5.2 

Cellulose % VS 15 - 20 17 - 25 11 - 15 

Hemicellulose % VS 20 22 11 - 17 

Nitrogen kg/day-animal 0.037 - 0.95 0.22 - 0.33 0.002 - 0.01 

Phosphorus kg/day-animal 0.024 - 0.25 0.08 - 0.14 0.001 - 0.37 

Potassium kg/day-animal 0.028 - 0.26 0.12 - 0.19 0.001 - 0.46 

 

Table 2.3: Calculated average potential biogas and heat energy produced per animal calculated depending on manure type. 

Type of manure Unit Swine Cow Poultry Horse 

  
Sow Boar Dairy Beef 

  
Weight of excrete a kg/animal-day 8.10 3.80 59.0 39.0 0.086 25.4 

VS in excrete a kg/animal-day 0.74 0.34 5.18 4.05 0.02 3.02 

VS reduction at 20°C b % 49 49 31 41 56 31 

Potential biogas yield c m3 biogas/kg VS 0.34 0.35 0.25 0.092 0.43 0.28 

Potential biogas volume 

produced 
m3biogas/animal-day 0.15 0.06 0.52 0.16 0.004 0.26 

Potential methane volume 

produced 
m3 CH4/animal-day 0.09 0.03 0.31 0.10 0.002 0.15 

Heat energy production rate MJ/animal-day 1.6 0.62 5.5 1.7 0.042 2.7 
a USDA (2008), b Fulhage et al. (1993), c Burton and Turner (2003) 
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Table 2.4: Calculated total heat energy requirements to boil 0.5 kg of different foods in different vessel material. 

Vessel material 
 

Aluminum Copper Stainless steel Clay pot Cast iron 

Vessel material specific heat capacity a kJ/kg-°C 0.90 0.85 0.50 0.94 0.46 

Heat energy required to increase vessel temperature per 

degree  kJ/°C 
0.45 0.43 0.25 0.47 0.23 

Type of food Water Beans Rice Potatoes Eggs 

Food specific heat capacity a kJ/kg-°C 4.18 1.17 4.18 3.43 3.18 

Heat energy required to increase water temperature per 

degree  kJ/°C 
2.09 2.09 2.09 2.09 2.09 

Heat energy required to increase food temperature per 

degree  kJ/°C  
0.59 2.09 1.72 1.59 

Total heat energy required kJ/°C 2.54 3.10 4.43 4.27 3.91 

Total heat energy required to heat whole mass from 20 to 

100°C kJ 
203 248 355 342 313 

Heat energy required to increase item temperature per degree = mass of item x specific heat capacity ; a “Specific heats” 

 

Table 2.5: Roles of primary nutrients during plant growth. 

Nutrient Roles derived from Tucker (1999) 

Nitrogen • Involved in photosynthesis.  

• Promotes plant growth as a component of cell division. 

• Increases quality and size of plants. 

• Assists in plant’s protein synthesis through amino acids. 

Phosphorus • Involved in protein synthesis  

• Promotes germination, blooming and budding. 

• Assists in seed development. 

• Makes plants less vulnerable to cold temperatures. 
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Table 2.6: Summary of pollutants found in raw livestock waste and their environmental impacts. 

Pollutant Environmental Impacts References 

Biodegradable organic matter Degradation of biodegradable organic matter decreases 
DO levels in water bodies which affect aquatic life. 
 

 

Nutrients 
Nitrogen  
Phosphorus 

High concentrations of nutrients promote excessive 
growth of plants and algae. Decomposition of dead algae 
decreases DO levels. This process is called eutrophication. 
  

Chislock et al., 
2013 
 

Suspended solids Increase water turbidity, decreasing light penetration 
which affects aquatic plants photosynthesis process. 
Suspended solids also accumulate in fish gills affecting 
their growth rates and health.  
 

Au et al., 2004 

Pathogens  
Cryptosporidium parvum, 

Giardia lamblia, 

Campylobacter jejuni, 

Salmonella sp. and E. coli 

O157 H7 

 

Human exposure to pathogens in water bodies that are 
used for drinking water, recreation and fishing.  

Dufour et al., 
2012 

Air pollutants  
VOC, GHGs, odorous gases 
and particulate matter 

Livestock waste decomposition forms air pollutants that 
cause respiratory illness such as asthma, smog formation, 
psychological stress from continued exposure and climate 
change. 

EPA, 2011 

Trace metals Copper, zinc and boron can negatively affect the 
environment from accumulation in water bodies. 
 Kinyua, 2013 

Chemicals of concern Antibiotics and pharmaceuticals in water bodies affect 
aquatic life 
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Figure 2.1: Schematic illustrating link between digester operation, benefits and policies. 

 
Figure 2.2: Schematic of a small-scale tubular digester used in the developing world. 
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Figure 2.3: Images of tubular digesters with and without a biogas storage bag treating swine 
waste in Costa Rica  
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Chapter 3: 

 

Physical and Biological Processes in Tubular Digesters2 

3.1 Introduction 

Anaerobic digestion of livestock waste is a waste management technology that can 

improve the quality of life for those in the developing world. Biogas produced from small-scale 

anaerobic digesters is most often used as a cooking fuel, but can also be used to heat water or 

buildings or generate electricity for on-site use (Ferrer et al., 2011). Lack of proper livestock 

waste management leads to runoff of pollutants into surface waters and contamination of 

groundwater. Anaerobic digesters can assist in reducing water pollution by decreasing the 

concentration of organic matter in the waste. In addition, these systems can be a useful tool to 

mitigate deforestation when biogas is used as a cooking fuel rather than firewood. This also 

results in decreased public health concerns, especially for women and children who are 

disproportionally affected by indoor air pollution due to cultural and social roles (Ferrer et al., 

2011). The effluent from anaerobic digestion also contains primary nutrients (nitrogen, 

phosphorus) that can be used as a soil amendment to improve crop yields (Ferrer et al., 2011).  

 Polyethylene tubular anaerobic digesters are commonly used in small-scale applications 

to recover energy from livestock waste in the developing world. These systems do not require a 

high level of skilled labor to install; they are easy to operate, low in cost and can operate under a 

range of temperature conditions. Several studies have been carried out investigating the effect of 

                                                           
2 This chapter is adapted from a manuscript under review at Applied Energy: Kinyua, M.N., Zhang, J., Céspedes, 
F.C., Tejada-Martinez, A., Ergas, S.J, "Physical and biological process modeling of tubular digesters treating swine 
waste in rural Costa Rica" 
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influent waste characteristics and reactor design and operation on tubular digester performance 

(Lansing et al., 2010; Ferrer et al., 2011). However, no prior studies exist that combine 

mathematical modeling analyzing the physical (transport and mixing) and biological processes 

with field studies of tubular anaerobic digester performance.  

Mathematical models have been used to provide insights into operating hydraulic 

residence time (HRT) and mean cell residence time (MCRT) in anaerobic digesters (Wu, 2012). 

Control of HRT and MCRT are needed to avoid wash-out of soluble substrates and slow growing 

microorganisms, respectively (Kinyua et al., 2014). Mixing mechanisms in digesters that can 

affect HRT include formation of dead zones, internal recirculation, and short-

circuiting/channeling (substrate by-passing treatment) (Levenspiel, 1999). In bioreactors without 

solids separation and recycling, MCRT is normally considered to be equal to the HRT; however, 

even without solids separation or recycling, the MCRT in tubular digesters may be longer than 

the HRT due to solids settling and accumulation (Lansing et al., 2010; Ferrer et al., 2011; Usack 

et al., 2014). Tubular digesters are fed with a high solids concentration, which favors collisions 

between particles to form flocs that are denser than water. Over time a floccular  sludge layer 

forms, similar to processes occurring in anaerobic baffled and upflow anaerobic sludge blanket 

(UASB) reactors (Angelidaki  et al., 2002; Montteran et al., 2013). Hydrolysis of particulates 

into soluble substrates and formation of organic acids (intermediate substrates for methanogens) 

by acidogens are often considered the rate limiting steps during anaerobic digestion and are 

affected by the MCRT (Kinyua et al., 2014). As the MCRT increases, hydrolyzing and 

acidogenic bacterial growth rates increase because they have adequate time to utilize solid and 

soluble substrates to form acetate and hydrogen (H2), which are utilized by the methanogens 

(Kinyua et al., 2014). 
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Computational fluid dynamic (CFD) modeling is a useful tool that can produce residence 

time distribution (RTD) data for estimating the mean liquid HRT in a digester. CFD models have 

been successfully applied to contactors used for water and wastewater treatment (Zhang et al. 

2013). These models can also provide information on the physical mechanisms within the 

digester (Wu, 2012). Furthermore, CFD models can be used to inform simplified transport 

models, such as plug flow, completely mixed, tanks in series and or dispersion (Méndez-Romero 

et al., 2011). Several studies have been carried out using CFD to evaluate the effect of transport 

and mixing mechanisms on biogas production in completely mixed anaerobic digesters; 

however, more research is needed to understand the physical mechanisms contributing to tubular 

digester performance (Wu, 2012). 

While CFD modeling is useful for evaluating the physical processes and liquid HRT in 

anaerobic digesters, these models do not evaluate the biological processes occurring in the 

digesters.  The anaerobic digestion model 1 (ADM1) is a steady-state bioprocess model that 

incorporates hydrolysis and acidogenesis with influent and effluent characteristics to estimate 

volatile solids (VS) removal and methane (CH4) production (Batstone et al., 2002). The ADM1 

model is complex, involving 19 process kinetics and 24 biochemical components to determine 

digester performance.  In addition, ADM1 models the reactor as a completely stirred tank reactor 

(CSTR), which may not be appropriate for modeling the performance of tubular digesters with 

floccular sludge accumulation. To overcome this limitation, Bernard et al. (2001) and Elmitwalli 

(2013) developed simple models for anaerobic floccular sludge layer reactors.  The models 

incorporate acidogenesis and methanogenesis and have been applied to full-scale UASB reactors 

(Elmitwalli, 2013).  
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This study investigated the performance (biogas production and effluent quality) of a 

tubular digester treating livestock waste in the Monteverde region of Costa Rica. A tracer study 

was performed on this digester to gain insight into transport and mixing mechanisms in the 

system. Data from the tracer study was used to calibrate a CFD model, which was used to 

estimate the operating HRT and visualize transport and mixing mechanisms in the digester. A 

simplified bioprocess model, incorporating conversion of soluble substrates to CH4 and biomass 

decay, was used to estimate the active biomass concentration in the digester.  The active biomass 

concentration was used to estimate the operating MCRT. Results from the physical and 

biological processes models provided a supporting framework on the relationship between the 

transportation and transformation mechanisms and how these mechanisms affect biogas 

production and effluent quality in tubular digesters. 

3.2 Materials and Methods 

3.2.1 Site Description and Tubular Digesters 

San Luis de Monteverde is a rural mountain community located on the Pacific slope of 

the Tilarán mountain chain in northwest region of Costa Rica with an altitude range of 600 to 

1200 m (~0.85atm) above sea level. San Luis de Monteverde has a population of approximately 

500 people. The main economic activities in San Luis de Monteverde are small-scale production 

and sale of farm products, including coffee, vegetables, fruit, beans, corn, pork, beef, chicken 

and eggs; rural tourism is also significant. Households in San Luis de Monteverde have access to 

potable water provided by a locally administrated aqueduct project. Domestic wastewater is 

normally treated using septic systems, while livestock wastewater remains largely untreated 

causing contamination of the watershed. To improve livestock waste management, community 



www.manaraa.com

41 

 

leaders have obtained the support of local and international collaborators, such as the University 

of Georgia and the Monteverde Institute, to install tubular digesters in the San Luis valley.  

Eight farmers in San Luis de Monteverde use Taiwanese-model tubular polypropylene 

bag digesters with PVC piping to treat livestock waste and produce biogas for cooking. The 

digesters have a 9-12 m3 working volume with a 4 m3 biogas storage bag. These household 

digesters typically treat swine waste from 4-10 pigs and provide fuel for approximately 4 hours 

of cooking per day, which meets the needs of an average family of 5 people.  The operating 

parameters for the digester that was analyzed in this study, over a 5 week field-study are shown 

in Table 3.1. 

3.2.2 Tracer Study 

A tracer study was performed to understand the digester’s transport and mixing behavior. 

It should be noted that this is the first study to perform a tracer study on a tubular digester to 

understand these system’s hydrodynamic mechanisms. Fertilizer grade potassium chloride (KCl) 

(Mezcla Distribuido, Limón Costa Rica) was used as a tracer due to its ease of use and lack of 

hazardous waste produced, as the effluent from the digester is used to fertilize cattle pastureland. 

A calibration curve was developed to allow effluent tracer conductivity measurements to be 

reported in terms of KCl concentration (g KCl/L). The target influent concentration was 8.5 g 

KCl/L. This concentration was selected to ensure that the effluent conductivity was significantly 

higher than the measured background conductivity and that the chloride concentration did not 

inhibit methanogenesis (Serrano et al., 2014). Note that biogas production in the digester 

remained stable during the tracer study, as will be discussed later. A mass of 4.75 kg of KCl was 

added to the 572 L of influent, mixed thoroughly and quickly poured into the digester through 
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the influent pipe. Samples were collected from the outlet pipe every other day for 32 days and 

conductivity was measured as described below. 

3.2.3 Analytical Methods 

All laboratory analyses were carried out at the University of Georgia Costa Rica campus 

(San Luis, Puntarenas, Costa Rica). Influent and effluent samples were collected and analyzed 

weekly from the digester for 5 weeks. Standard Methods (APHA, 2012) were used to measure 

BOD5 (5210), VS, and total solids (TS) (2540 G). Hach high range TNT test kits and a Hach DR 

890 portable colorimeter (Loveland, CO) were used to measure total ammonia nitrogen (TAN) 

(TNT 832), total nitrogen (TN) (TNT 827) and total phosphorus (TP) (TNT 845) concentrations. 

pH was measured using Oakton portable waterproof pHTestr 10 (Vernon Hills, IL). COD 

measurements could not be carried out during the field-study because there were no facilities to 

dispose the hazardous waste generated. Biogas volume in the tubular digester was measured 

using a wet tip gas meter (Wayne, PA). CH4 content of the biogas was measured using RKI 

Eagle 72-5335RK-05 portable gas detector equipped with CH4 and CO2 sensors. Digester 

temperature was measured using a Thomas traceable digital thermometer (Philadelphia, PA). 

Conductivity was measured using a Fisher scientific traceable conductivity meter (Hanover Park, 

IL) with a conductivity detection limit of 19.99mS/m. Method detection limits (MDL) were 

(mg/L): TAN (2), TN (5) and TP (1.5). A sample of floccular  sludge from the tubular digester 

was collected from the outlet pipe (Figure 3.1a). A 0.25 L container was securely taped to a 1.5 

m tube and slowly introduced into the tubular digester from the outlet pipe. A sample volume of 

5.0 L was collected and analyzed based on standard methods (APHA, 2012) for total suspended 

solids (TSS) (2540 D), volatile suspended solids (VSS) (2540 E) and sludge volume index (SVI) 

(2710 D).  
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3.2.4 Data Analysis 

Oracle Crystal Ball (Redwood City, CA) was used for Monte Carlo simulation. A Monte 

Carlo uncertainty analysis was performed by running 1,000 trials with selected parameter values 

within the range previously reported in the literature (Table 3.2) to determine which model 

inputs affected the MCRT value. All the kinetic inputs were considered uncertain inputs with 

triangular distribution. Triangular distribution was used due to lack of sufficient kinetic input 

data to fit a uniform distribution. Crystal Ball calculates the sensitivity by ranking what inputs 

significantly correlate with the output while the simulation is running. If an input and output 

have a high correlation percent, it means that the input will have a significant impact on the 

output. The percentage is the rank of correlations normalized to 100%. A positive contribution 

means that the input will increase the output and a negative contribution means the input will 

decrease the output. 

3.3 Model Development 

3.3.1 Physical Processes Model 

3.3.1.1 Computational Fluid Dynamics: Governing Equations for Flow and Tracer 

Transport 

In this study, the unsteady Reynolds-averaged Navier-Stokes equations (RANS) 

simulation technique was employed for flow and tracer transport simulation in the tubular 

digester. In the present unsteady RANS simulation, the governing equations for flow and tracer 

transport were solved simultaneously at each time step. Governing equations for the flow 

consisted of the Reynolds-averaged continuity equation and incompressible Navier-Stokes 

equations: 

6〈8&〉
6:&

= 0 (Eq. 3.1) 



www.manaraa.com

44 

 

6〈8&〉 
6< + 〈8>〉 6〈8&〉 

6:>
= − 1

A
6〈B〉
6:&

+ C 6D〈8&〉
6:>D

− 1
A

6〈8&E8>E〉  
6:>

 (Eq. 3.2) 

where a bracket denotes Reynolds-averaging, vector  〈8&〉  is the Reynolds-averaged velocity, 

vector :& is position, < is time, 〈B〉 is Reynolds-averaged pressure, ρ is density, and C is kinematic 

viscosity.  
The Reynolds stress tensor  〈8&′ 8>′ 〉  (expressed in terms of velocity fluctuation 8&′ ) was 

closed using an eddy viscosity model in which: 

〈8&E8>E〉 =  −F0
6〈8&〉 

6:>
 (Eq. 3.3) 

and the eddy viscosity is:  

F0 = GH
ID

J  (Eq. 3.4) 

where k is the turbulent kinetic energy and ε is the turbulent kinetic energy dissipation rate. 

Transport equations for k and ε were specified via the standard k-ε model equipped with standard 

wall functions (Wilcox, 1994). Model coefficient, GH was taken as GH = 0.09, its standard value.  

Tracer transport was governed by the Reynolds-averaged advection-diffusion equation:   

6〈G〉
6< + 〈8>〉 6〈G〉 

6:>
= − 6〈8&EGE〉 

6:>
 (Eq. 3.5) 

where 〈G〉 is the ensemble-averaged tracer concentration, G ′ denotes tracer fluctuation and 

turbulent flux. 〈8>′ G ′〉  was modeled as:  

−〈8>EGE〉 = M0
6〈G〉 
6:>

 (Eq. 3.6) 

Note that 〈G〉 is time-dependent due to transient boundary conditions, which are described below. 

The eddy (turbulent) diffusivity was taken as M0 = F<
A∙O/P

 where the eddy viscosity F<, was 
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computed via the k-ε model and the turbulent Schmidt number, Sct, was taken as 0.7 (Launder, 

1978).  Usually the turbulent diffusivity is much greater than molecular diffusivity in convection-

dominated flows. This was confirmed in the present simulations; therefore, molecular diffusion 

term was neglected in the tracer transport equation (Eq. 3.5). 

It should be noted that in the present CFD simulation, the tubular digester's flexible walls, 

solids accumulation and biogas bubble generation were not considered. Although incorporating 

those features into the CFD model may make the CFD simulation more accurate and detailed, 

this additional complexity had no significant impacts on the primary function of the CFD model 

for this study, which was to validate the two assumptions that were used to develop the reduced 

order model (Section 3.3.1.3).  

3.3.1.2 Numerical Set-Up and Tools  

Digester 1 is 8m long with a 1.59m-internal diameter; other digester dimensions and 

components are shown in Figure 3.1a. The computational domain is shown in Figure 3.1b. The 

normal operating procedure was that each day swine waste was mixed with water to obtain a 

slurry with an average TS concentration of 6.35g/L. The slurry was fed into the digester for 

approximately 15 minutes at a rate of approximately 2,280 L/h.  The Reynolds number was 

estimated to be 7,964 at the inlet zone based on inlet diameter (0.1 m) and influent velocity 

(0.078 m/s), and 674 in the main digester based on the diameter of the digester (1.59 m) and bulk 

velocity (4×10-4 m/s). The numerical digester was run to simulate the first day of the physical 

tracer study. During the 15 minutes of feeding (flow-through) at the beginning of the cycle, the 

inlet of the digester was assigned a constant influent velocity.  A pressure outlet boundary 

condition is applied to the outlet of the digester. The other boundaries employed no-slip wall 

boundary conditions. After the 15-minute flow-through period ended, the flow into the digester 
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was shut down and thus the digester behaved as a batch-reactor until the next feeding period. 

During this stage the boundary conditions for the inlet and outlet changed to no-slip wall 

boundary conditions since the system was assumed to be closed. The other boundary conditions 

did not change.   

In order to calculate the mean liquid HRT, a tracer pulse with a concentration 8.3 g 

KCl/L was injected into the digester during the first feeding 15-minute flow through period of 

the CFD simulation. This was calculated by dividing the total tracer mass (4.75 kg) by the 

influent flow (572L) during the 15 minute flow-through period. An unstructured grid, which was 

generated using Gambit (Fluent, Inc. 2004), was employed for the physical processes model 

simulations. The total number of grid cells was 85,134. This mesh is shown over half of the 

domain in Figure 3.1b. All simulations were conducted using OpenFOAM (OpenCFD Ltd., 

2012), a collection of C++ libraries for solving continuum mechanics problems using the well-

known finite volume method.  

3.3.1.3 Reduced Order Model 

A general mass balance equation for the system during the 15 minute flow-through 

period was written as:  

Q RG-
R< = SG&1 − SG'.0 (Eq. 3.7) 

where G- is the tracer concentration in the digester, G&1 is the influent tracer concentration, G'.0 

is the effluent tracer concentration, Q is the volume of the digester, S is flow rate and < is time. 

Based on the operating conditions, two assumptions were made. The first assumption was that 

the batch reactor period was sufficient to mix the tracer in the digester. Thus G- was uniform 

everywhere in the digesters at the end of the batch reactor period or at the beginning of the next 

flow-through period 
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G'.01 = G-1 (Eq. 3.8) 

where T indicates current day and (T − 1) indicates the previous day.  

The second assumption was that during the 15 minute flow through period, the impact of 

the inflow on the effluent concentration was negligible. That is  G'.01 = G-1 was valid for all the 

flow-through periods. The two assumptions were subsequently validated via CFD simulations. 

By applying the two assumptions, Equation 3.7 was integrated and expressed as: 

G-1 = G-1WX + YS
Q ZG&1

(1WX) − G-
(1WX)[ (Eq. 3.9) 

with conditions: 

G-\ = 0 (Eq. 3.10) 

G&11 = ]G\
0       T = 0

T ≥ 1 (Eq. 3.11) 

where G\ is the initial tracer concentration in the digester and  Y is the 15 minute flow-through 

period.  

3.3.2 Bioprocess Model 

Since granular and floccular sludge reactors, such as anaerobic baffled and UASB 

reactors, have been used to treat high strength swine waste (Angelidaki  et al., 2002; Montteran 

et al., 2013), the bioprocess model was based on a sludge layer reactor model developed by 

Elmitwalli (2013). Given that the active biomass concentrations inside the tubular digester (Xm) 

and in the effluent (Xme) were unknown, the bioprocess model was used to calculate these values, 

which were used to estimate the MCRT according to the following: 

_G`Y =  Qab
Sab3

 (Eq. 3.12) 
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The full bioprocess model formulation is presented in Elmitwalli (2013).  Mass balances on Xm 

and daily methane production rate (ṁ) were sufficient to estimate the MCRT for this study, so 

only these equations are presented here. A steady-state mass balance on Xm in the digester yields:  

0 = Sab& − Sab3 + cb
dbefab
dO + ef

Q − d-abQ (Eq. 3.13) 

where Xmi is the active biomass in the influent (assumed to be negligible), Sb is the soluble 

biodegradable substrate concentration (assumed to be equal to the effluent BOD5 concentration), 

KS is the biomass half saturation constant and Km is the Monod maximum substrate utilization 

rate. To verify that the estimated concentration of biomass (Xm) in the tubular digester was 

accurate, a steady state mass balance on volatile solids (Xb) was developed. The derivation and 

verification of the VS mass balance is summarized in Appendix B. A steady-state mass balance 

on CH4 in the system yields: 

0 = −ṁ + (1 − cb) dbefab
dO + ef

Q (Eq. 3.14) 

where ṁ is the daily methane production rate. Note that the daily methane production rate was 

expressed as g COD/day by adjusting the measured methane production rates (Table 3.2) to 

standard temperature and pressure (STP) and assuming 4 g COD/g CH4. The kinetic constants 

that were applied to this model were obtained from studies treating swine waste at psychrophilic 

temperatures (Table 3.2).  

3.4 Results and Discussion 

3.4.1 Overall Tubular Digester Performance 

Average performance of the tubular digester over the 5-week field study period is shown 

in Table 3.3. The TSS and VSS concentrations retrieved from the sludge settleability analysis 

were 33.2 gTSS/L and 0.40 gVSS/L respectively and sludge had a SVI of 1.51 mL/g TSS. From 
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these results, three main conclusions can be drawn. First, the results from the settleability 

analysis indicate that the sludge retrieved from the outlet pipe of the tubular digester had good 

settling characteristics. Sludge with a SVI below 10 mL/g TSS is considered to have good 

settling properties, which is characteristic of granular and floccular sludge flocs (Angenent et al, 

2002). Having biologically active floccular sludge with a low SVI has shown to improve CH4 

production in an anaerobic sequencing batch reactor treating swine waste (Angenent et al, 2002). 

Immobilization of methanogens and other anaerobic digestion microorganisms onto inert 

material and other cells to form granules is beneficial because this promotes diversity in the 

microbial community. This is due to metabolic interactions within the granule that promote faster 

substrate utilization. Formation of granules also promotes a more flexible and stable sludge that 

can withstand temperature and loading rate fluctuations (Bialek et al., 2012). Since good CH4 

production was observed in the tubular digester, the low VSS concentration from the solids 

settleability test indicated that the microbial composition of the sludge changes diagonally within 

the tubular digester. This observation was in good agreement with Montteran et al. (2013), who 

showed diagonal distinction in the microbial composition of granules from an anaerobic baffled 

reactor treating swine waste. Each diagonal compartment contained separate microbial groups 

representing each anaerobic digestion phase (fermentation, acidogenesis, acetogenesis and 

methanogenesis). Due to the design of the tubular digester, it was not feasible to collect samples 

other than from the outlet pipe. The low VSS to TSS ratio indicated that the sludge taken from 

the outlet pipe was mainly inert material. This was likely influenced by the MCRT. Longer 

MCRT allow for greater degradation of the organic matter in the influent. Results from the 

biological model used to estimate the MCRT are discussed later. 
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The second main conclusion is that the digester had high VS and BOD5 removal 

efficiencies (Table 3.3). The ability for anaerobic digestion to decrease the organic matter 

concentration in waste is one of its attractive benefits. The VS and BOD5 removal efficiencies 

were greater than 75%. This is greater than previously reported values for complete mix 

digesters treating swine waste at mesophilic and thermophilic temperatures (Hill et al., 1986; 

Kinyua et al., 2014). These high organic matter removal rates provided further evidence of solids 

accumulation and formation of a biologically active floccular  sludge layer.  

The third main conclusion is that high TN and TP percent removals were observed; 83.6 

and 91.6% respectively. Since there is no removal mechanism for TN and TP during anaerobic 

digestion, other processes were investigated to better understand TN and TP removal 

mechanisms. During anaerobic digestion, nitrogen, phosphorus and metal ions present in the 

organic matter are released as particulate organic matter is degraded. Swine waste contains high 

concentrations of magnesium (Mg), TN and TP, which may lead to the formation of struvite 

(MgNH4PO4.6H2O), which can attach to solids within the reactor. Struvite precipitates can be an 

operational problem because they cause pumps to foul and pipe blockage (Martí et al., 2008). 

Struvite precipitation during anaerobic digestion is affected by pH, rate of mixing, temperature, 

solids settleability and ion molar ratios (Martí et al., 2008). To assess whether conditions in the 

tubular digester favored struvite precipitation, the thermodynamic solubility product of [Mg2+] 

[NH4
+] [PO4

3-] was analyzed (Rahaman et al., 2010). Influent Mg concentration was assumed to 

be 0.21g/L based on an average value from prior studies of swine waste characteristics (see Lin, 

2012 for review).  A thermodynamic solubility product (log Ksp) of 10-11.4 was estimated, which 

was within the struvite solubility product of 10-9.41 – 10-14.1 at 20-25°C and a pH of 6.45 – 8.97 

(Rahaman et al., 2010). Thermodynamic solubility products within this range indicate struvite 
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precipitation within the digester was favored. Tubular digesters may require periodical 

desludging every 5-10 years due to the solids accumulation (Vögeli et al., 2014) and the sludge 

can be expected to have a high TP concentration. 

3.4.2 CFD and Reduced Order Model  

Unsteady RANS simulations were conducted for the first day after releasing the tracer for 

the 15 minute flow-through period and the subsequent 23 hours and 45 minutes batch-reactor 

period. For the 15 minute flow-through period, there was flow spanning the entire digester from 

the inlet through the outlet. Following the coordinate system established in Figure 3.1b, speed 

contours on the middle x-z plane and three y-z planes (at x = 0, 4, and 8 m respectively) for 1, 5, 

10 and 15 minutes are shown in Figure 3.2 a-d respectively. From Figure 3.2, it was observed 

that the flow developed during the first 5 minutes and unsteady flow behavior was observed at 

the tail of the high-speed jet (red color) after 5 minutes (Figure 3.2 b, c and d). Areas within the 

digester with short circuiting and dead zones were also observed and are reflected in the tracer 

concentration contours shown in Figure 3.2 e and f.  From Figure 3.2f, it can be seen that the 

tracer moves quickly through the digester due to the short-circuiting pathway but does not reach 

the digester outlet by the end of the 15 minute flow-through period. The simulation predicted an 

outlet tracer concentration less than 1E-30 g KCl/L at the end of the 15 minute flow-through 

period. This demonstrated that the influent flow had negligible effect on the effluent 

concentration and serves to validate the second assumption in the reduced order model (Figure 

3.3a-d).   

During the 23 hours and 45 minutes batch-reactor period there is no flow at the inlet or 

outlet. The speed contours in the middle x-z plane and three y-z planes (x=0, 4, and 8 m) at 15 

and 30 minutes and 1, 3, 6 and 24 hours after batch-mode initiation are shown in Figure 3.4a-f. 
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From Figure 3.4, it was observed that although there was no flow through the inlet or outlet, flow 

continued within the digester. The tracer continued to move towards the outlet of the digester due 

to inertia, resulting in tracer transport during the first hour after the system was closed (Figure 

3.4a, b, and c). The flow gradually slowed down due to viscosity, after which the main tracer 

transport mechanism was by diffusion. The tracer concentration contour had insignificant change 

after one hour because transport via diffusion is slower than that by advection (Figure 3.4d, e, 

and f).  

At the end of the 23 hours and 45 minutes batch-reactor period, the tracer concentration 

was evenly distributed in the digester except for the area near the inlet. The effluent tracer 

concentration from the experimental data was 0.51 g KCl/L, which was 27% higher than the 

reduced-order model prediction (0.4 g KCl/L). In anaerobic digesters, biogas bubbles generated 

provide some mixing in the system. However, mixing from biogas bubbles was not considered 

during the unsteady RANS simulations. If it was considered, the tracer in the digester would be 

closer to completely mixed. Thus, the CFD simulation for the tracer transport during the 23 

hours and 45 minutes batch-reactor period validated the first assumption that the system 

functions as a CSTR during this period. In addition, the experimental RTD curve (Figure 3.5a) is 

characteristic of a CSTR mixing mechanism (Levenspiel, 1999). After validating the first and 

second assumptions through the unsteady RANS simulation, the RTD was predicted using the 

reduced order model. The model RTD was compared to the experimental data in Figure 3.5a and 

b. From Figure 3.5b the predicted RTD was in good agreement with the experimental RTD, with 

a coefficient of determination, denoted R2, of 0.874. The mean liquid HRT predicted from the 

reduced-order model was 22.8 days. For the physical model simulations, the field data was not 

monitored long enough for the mean liquid HRT estimation. In principle the CFD simulations 
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could have been used to obtain the mean liquid HRT, but this would require running the 

simulation for much longer than 24 hours, thereby making the simulation very expensive. For 

computational efficiency the CFD simulations were used to inform the reduced order model 

which made it less expensive to run for HRT calculations. 

3.4.3 Bioprocess Model 

Results for range of Xm, Xme, MCRT and CH4 activity values are shown in Table 3.4. An 

average MCRT of 115 days was determined with a median of 110 days, minimum of 52 days, 

maximum of 265 days and a standard deviation of 33.6.  It should be noted that the modeled Xme 

concentration was within the range of the measured effluent VS concentrations (Table 3.3). A 

Monte Carlo sensitivity analyses (as described in Section 3.2.4) was carried out to determine 

which bioprocess kinetic inputs significantly influenced the MCRT and the probability 

distribution of the MCRT (Figure B.1). The outcomes from the sensitivity analyses are 

graphically represented in Figure 3.6. From these results, two main conclusions can be drawn. 

First, the performance and MCRT values obtained from this study were similar to other studies 

using granular sludge layer reactors to treat wastewater at psychrophilic temperatures. Lo et al. 

(1994) and Lim and Fox (2011) both reported organic matter removal rates of approximately 

90% when treating swine waste in UASB reactors at psychrophilic temperatures. Uemura and 

Harada (2000) obtained MCRTs ranging from 110 to 117 days and CH4 activity of 0.03-0.09 g 

CH4-COD/g VS added-day while treating domestic wastewater in a UASB at 13 to 25°C. These 

results are similar to the results from the tubular digesters in this study (Table 3.4) and also in 

agreement with Henze et al. (2008), who recommended an MCRT of 60-140 days while treating 

domestic wastewater at 15-25°C in a granular sludge layer reactor. Although the recommended 
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values are for domestic wastewater, they are a useful starting point due to limited literature on 

MCRT in tubular and floccular sludge layer reactors treating swine waste. 

Second, the MCRT value was most sensitive to Km, Kd and Ks and least sensitive to Ym 

(Figure 3.6). Km represents the maximum rate at which the active biomass can hydrolyze the 

particulate substrates. An increase in Km indicates that a shorter MCRT would be needed for the 

observed biogas production rate.  Kd is that rate at which the active biomass undergoes 

endogenous decay, resulting in a decrease in the active biomass in the digester. KS is the 

substrate concentration at which the anaerobic processes occur at half the biomass maximum 

growth rate and is an indicator of the active biomass affinity for substrate (Metcalf and Eddy, 

2003). A decrease in KS indicates an increase the microbes’ affinity for the substrate, thus 

indicating that a shorter MCRT is sufficient for hydrolysis and conversion the particulate and 

soluble substrates to CH4.  

In tubular digesters, the physical and biological processes are interconnected. A sufficient 

mean liquid HRT is needed to allow for the solubilization of complex organic matter in the 

influent and to provide adequate contact time between the active floccular sludge layer and the 

dissolved substrates for efficient biogas production. A decrease in HRT reduces the contact time 

between the active floccular sludge layer and the dissolved substrates resulting in decreased 

biogas production. From the influent and effluent characteristics, sludge settleability and CH4 

production rates observed in the tubular digester, a mean liquid HRT of 23 days combined with a 

MCRT of 115 days indicates a robust syntrophic relationship between the physical and 

biological processes. This good relationship led to low organic matter in the effluent and 

sufficient biogas production to meet households’ energy demands. Although the effluent quality 

in the tubular digester was good in terms of organic matter, more research is needed to determine 
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how the physical and biological processes affect other effluent characteristics such as pathogen 

concentrations and how these models can be used to predict pathogen removal efficiencies. This 

is an important public health task because effluents from tubular digesters are often used as a soil 

amendment to reduce cost of purchasing mineral fertilizers. 

3.5 Conclusions 

The low effluent organic matter concentrations were attributed to the formation of a 

biologically active floccular sludge layer, resulting in good biogas production to meet 

households' energy demands. CFD modeling indicated the system functioning as a CSTR. The 

mean liquid HRT was estimated at 22.8 days. The bioprocess model predicted an average MCRT 

of 115 days.  The model can be a useful tool to design tubular anaerobic digesters but further 

work is needed to validate the model. 

  



www.manaraa.com

56 

 

Table 3.1: Tubular digester operating parameters (n=5). 

Parameter Unit Tubular Digester 

Working volume (V) Ld 12000 

Temperature °C 20.7 ± 0.48 

Influent flow (Q) L/day 543 ± 10.0 

OLR g VS added /Ld-day 0.26 ± 0.10 

 

Table 3.2: Kinetic constants applied in the bioprocess model. 

Parameter Unit Minimum Maximum Reference 

Kd day-1 0.006 0.04 Massé and Droste, 2000 

Ym 
g biomass COD/g 
COD utilized 

0.23 0.25 Massé and Droste, 2000 

Km 
g COD utilized/ g 
biomass COD-day 

2.00 8.00 Vavilin, 1997 

KS g/L 0.15 1.81 
Vavilin et al., 1997; Massé and 
Droste, 2000 

 

Table 3.3: Average tubular digester influent and effluent characteristics (n=5). 

Parameter Unit Influent Effluent 

BOD5 g/L 5.09 ± 0.30 0.030 ± 0.015 

TS g TS/L 6.35  ± 2.87 0.77 ± 0.25 

VS g VS/L 5.17 ± 2.44 0.58 ± 0.24 

TAN mg NH4
+-N/L 140 ± 49.0 52.8  ± 4.66 

TN mg N/L 300  ± 23.6 49.3 ± 5.12 

TP mg PO4/L 402  ± 126 33.9 ± 8.91 

pH 
 

7.08  ± 0.62 7.04 ± 0.14 

Methane content (SCH4)  % 71.0 ± 10.0 

CH4 production rate (ṁ) m3 CH4/day 2.01 ± 0.87 

 

Table 3.4: Bioprocess model results and calculated CH4 activity. 

Parameter Unit Value 

Xm g COD/L 2.00 - 4.94 

Xme g COD/L 0.34 - 1.03 

MCRT day 51 - 259 

CH4 activity g CH4-COD/g VS added-day 0.056 - 0.086 
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Figure 3.1: (a) Schematic, (b) CFD domain and grid of the tubular digester, (c) tubular digester 
phases. 
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Figure 3.2: (a-d) Contour of speed (flow pattern) at various times on middle x-z plane and three 
y-z planes (x=0, 4, and 8 m), (e) streamline of flow in the digester (15 minutes) and (f) velocity 
vector distribution on middle x-z plane (15 minutes)  
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Figure 3.3: Contour of tracer concentration (tracer distribution) at various times on middle x-z 
plane and three y-z planes (x=0, 4, and 8 m) 
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Figure 3.4: Contour of tracer concentration (tracer distribution) at various times on middle x-z 
plane and three y-z planes (x=0, 4, and 8 m) 
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Figure 3.5: Comparison of predicted RTD from measured data (a) concentration versus time; (b) 
predictions versus measured data. 

   

Figure 3.6: MCRT variables sensitivity analysis 
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Chapter 4: 

 

Fate and Viability of Cryptosporidium parvum and Giardia lamblia in Tubular Digesters3 

4.1 Introduction 

Tubular digesters are small-scale anaerobic digestion systems that are used for bio-energy 

production and livestock waste management, primarily in Asia, Africa and Latin America. 

Tubular digesters can improve the quality of life for those in the developing world by producing 

biogas that is most often used as a cooking fuel, but can also be used to heat water or buildings 

or generate electricity for on-site use (Chapter 2). These systems can be a useful tool to mitigate 

deforestation when biogas is used as a cooking fuel an alternative to firewood. This also results 

in decreased public health concerns, especially for women and children who are 

disproportionally affected by indoor air pollution caused by burning wood or dung for cooking 

due to their cultural and social roles. Anaerobic digesters can also assist in reducing water 

pollution by stabilizing dissolved and particulate organic matter in the waste. The treated effluent 

from anaerobic digestion contains primary nutrients (nitrogen, phosphorus) that can be used as a 

soil amendment to improve crop yields (Chapter 2).  

In many developing countries, poor livestock waste management leads to human 

exposure to zoonotic pathogens. Exposure to pathogens in raw livestock manure occurs when 

farmers handle manure and apply it to soil and due to transfer of pathogens from soil to food 

crops or water bodies through runoff events (Erickson et al., 2006). According to the World 

                                                           
3 This chapter is adapted from a manuscript under review at Environmental Science and Technology. Kinyua, M.N., 
Trimmer, J., Izurieta, R., Ergas, S.J. “Viability and Fate of Cryptosporidium parvum and Giardia lamblia in Small-
Scale Tubular Anaerobic Digesters in Rural Costa Rica" 
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Health Organization (WHO), Cryptosporidium parvum, Giardia lamblia, Campylobacter jejuni, 

Salmonella sp. and E. coli O157:H7 are the main zoonotic pathogens present in livestock waste 

that cause illness to humans (Dufour, 2012). Cryptosporidium parvum accounts for 23.7% of all 

worldwide waterborne outbreaks annually, while Giardia lamblia infects approximately 2.8 

billion people worldwide annually (Dufour et al., 2012). The low infectivity of these protozoan 

parasites increases the associated public health risk. One Giardia lamblia cyst or approximately 

nine Cryptosporidium parvum oocysts have been shown to cause illness in humans (Erickson et 

al., 2006). Young, old and immune-compromised individuals are particularly susceptible to 

disease from infection with these protozoan parasites (Haas et al., 1999).  

Treatment of livestock waste using tubular anaerobic digesters has the potential to 

mitigate exposure to these pathogens. However, there is limited information about the fate of 

Cryptosporidium sp. and Giardia sp. (oo)cysts during anaerobic digestion. Several studies have 

investigated the effect of various environmental factors on the susceptibility of these protozoan 

parasites to inactivation including: UV radiation (Betancourt and Rose, 2004), moisture content 

(Van Herk et al., 2004), volatile fatty acids (VFA), temperature, pH and free ammonia. Of 

particular importance in tubular digesters are VFA, temperature, pH and free ammonia (NH3). 

Jenkins et al. (2002) and Olson et al., (1999) reported an increase in (oo)cyst inactivation rate as 

the temperature increased from 4 to 25°C in soil and water. VFA influence pathogen inactivation 

rates by acidifying pathogens’ cells by decreasing the pH (Medhat and Stafford, 1989).  Free 

ammonia in solution is in equilibrium with ionized ammonium (NH4
+). Concentrations of free 

ammonia increase with increasing total ammonia nitrogen (TAN) concentrations, pH and 

temperature. Jenkins et al. (1998) reported that free ammonia concentrations between 0.12 and 

2.52 g NH3/L and pH levels above 9 inactivated oocysts. As pH increases, oocysts wall increases 
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in permeability, leading to free ammonia easily penetrating into the Cryptosporidium sp. oocysts. 

Once inside the (oo)cysts, the free ammonia disrupts the cell chemistry and structure by 

denaturation of proteins, making the cells vulnerable to inactivation (Kidd, 2011).  

Only a few studies on the fate of Cryptosporidium sp. and Giardia sp. (oo)cysts during 

anaerobic digestion have been published previously (Chauret et al., 1999; Cote et al., 2006; Kato 

et al., 2010). Chauret et al. (1999) and Kato et al. (2010) studied the inactivation of 

Cryptosporidium sp. and Giardia sp. (oo)cysts in mesophilic (36°C) anaerobic digesters. Less 

than 0.15 log removal/day was observed in both studies while 1.0 log removal/day was observed 

within one hour at thermophilic temperatures (47-55°C) (Kato et al., 2010). The authors 

attributed this reduction to the increased temperature damaging the oocyst walls and DNA, 

resulting in non-infective Cryptosporidium sp. sporozites. Medhat and Stafford (1989) 

investigated the effect of VFA and temperature on inactivation of the protozoa Entamoeba 

histolytica (a protozoan parasite closely related to Giardia sp.) during mesophilic (37°C) and 

thermophilic (55°C) digestion of swine waste at a solids retention time (SRT) of 10 days. VFA 

concentrations were maintained between 1.5-3.0 g acetate/L. Maximum log removals were 0.5 

and 4.0 at 37°C and 55°C respectively. It should be noted that although high VFA concentrations 

have been shown to cause inactivation of (oo)cysts, VFA concentrations greater than 600 mg 

acetate/L have been shown to be inhibitory to methanogenesis (Wang et al., 1999). Cote et al. 

(2006) treated swine waste in a 20°C anaerobic sequencing batch reactor with a 20 day SRT. The 

level of oocysts in the effluent was below detection limits. Although the authors did not 

explicitly indicate the inactivation mechanism, VFA concentrations in reactors where (oo)cysts 

inactivation was observed were between 0.40-23.2 g/L. 
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Tubular digesters are being actively promoted as a waste management and bio-energy 

production alternative in developing countries where there is a high prevalence of giardiasis and 

cryptosporidiosis. It is therefore critical to understand the effect of environmental and operating 

conditions in tubular digesters on the viability and fate of Cryptosporidium parvum and Giardia 

lamblia (oo)cysts. This study investigated the environmental conditions in tubular digesters 

treating swine waste in the Monteverde region of Costa Rica. A kinetic study was performed in 

the laboratory to investigate the kinetics of (oo)cysts inactivation under similar environmental 

conditions (pH, temperature and TAN) as those observed in the field. Distribution of (oo)cysts in 

the solid and liquid phases was also assessed. The results were combined with mathematical 

models of tubular anaerobic digesters to estimate the concentration of viable (oo)cysts in the 

tubular digester effluents. These results can be used to provide guidance on proper design and 

operation of tubular digesters to minimize exposure to zoonotic pathogens. 

4.2 Materials and Methods 

4.2.1 Site Description and Tubular Digesters 

San Luis de Monteverde (N 10' 16.973" W 84' 47.882") is a rural mountain community 

located in the northwest region of Costa Rica. San Luis de Monteverde has a population of 

approximately 500 people. The main economic activities in San Luis de Monteverde are small-

scale farming and eco-tourism. Installation of tubular digesters in the San Luis was promoted by 

local educational and non-governmental organizations for energy production and to reduce 

livestock waste pollution of the watershed. Farmers in San Luis de Monteverde use Taiwanese-

model tubular anaerobic digesters to treat livestock waste and produce biogas for cooking. These 

systems typically treat swine waste from 4-10 pigs and provide fuel for approximately 4 hours of 

cooking per day, which can meet the needs of an average family of 5 people. Operating 
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parameters for four tubular digesters treating livestock waste in San Luis de Monteverde that 

were studied in this research are summarized in Table 4.1. In addition, all of the farmers who 

participated in this study were interviewed to gain insight into their livestock and tubular digester 

management practices. Interviews were conducted in Spanish at the field sites. A list of interview 

questions and answers is provided in Appendix C. 

4.2.2 Inactivation Kinetics 

Three bench-scale reactors were set-up at the University of South Florida (USF) 

Environmental Engineering laboratory (Tampa, FL), to determine the inactivation kinetics of 

Cryptosporidium parvum and Giardia lamblia (oo)cysts under similar environmental conditions 

as measured in the field-scale tubular digesters treating swine waste. The bench-scale reactors 

were set up in 1.0 L glass bottles with a working volume of 0.9 L. Reactor 1 was a bench-scale 

anaerobic digester and is described in Section 4.2.3. Reactor 2 contained phosphate-buffered 

saline (PBS) solution with added acetate (300 mg/L) and 80 mL of a 3 g NH4Cl/L stock solution, 

resulting in a TAN concentration of 240 mg NH4
+-N /L. PBS solution contained 0.0027 M KCl 

and 0.137 M NaCl at a pH of 7.4. Reactor 3 was a control reactor and contained only PBS 

solution. The purpose for Reactor 2 was to determine if VFA and TAN were the main 

contributors to (oo)cysts inactivation during anaerobic digestion.  Each of the three reactors 

contained two 10 mL Float-A-Lyzers (Spectrum Labs, Houston, TX). Float-A-Lyzers are a 

dialysis device with a synthetic membrane that allows solutes, such as TAN and VFA, to diffuse 

from areas of high concentration to low concentration across a semi-permeable membrane until 

equilibrium is reached. The porous membrane allowed solutes with a molecular weight of up to 

1000 kg/mole to pass through while retaining the 4 by 6µm and 12 by 5µm Cryptosporidium 

parvum and Giardia lamblia (oo)cysts, respectively. Each Float-A-Lyzer initially contained 2.5 x 
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104 viable (oo)cysts/mL of  Cryptosporidium parvum and Giardia lamblia suspended in PBS 

buffer solution. Viable Cryptosporidium parvum and Giardia lamblia (oo)cysts were obtained 

from Waterborne Inc. (New Orleans, LA). Reactors were purged with nitrogen for 1 minute each 

time they were opened for sample collection to maintain anaerobic conditions. Reactors were 

incubated at 21°C in a Hach Model 205 compact incubator (Loveland, CO) for 24 days. Samples 

were analyzed for (oo)cysts viability as described below. The inactivation kinetics study was 

carried out in duplicate, with each study period for 24 days. This study period was based on a 

physical model and tracer study that showed a liquid hydraulic retention time (HRT) of 

approximately 23 days for a tubular digester treating livestock waste in Monteverde (Chapter 3).  

4.2.3 Bench-Scale Anaerobic Digester 

The bench-scale anaerobic digester (Reactor 1) was initially inoculated with seed sludge 

from anaerobic digesters treating swine waste at the USF Environmental Engineering laboratory 

(Manser et al., 2015). Influent was prepared by blending swine waste with tap water to achieve a 

target volatile solids (VS) concentration of 20 g/L, similar to that found in the field tubular 

digester’s influent. Tap water was used for this study because farmers in San Luis de Monteverde 

used chlorinated tap water to prepare influent for the tubular digesters. Swine waste was 

collected weekly from Twenty Four Rivers Farm in Plant City, FL. Reactor 1 was operated at a 

24 day HRT. This digester was managed in a semi-continuous mode (fed once a week) and 

remained unmixed.  

4.2.4 Batch (Oo)cysts Adsorption Study 

In Chapter 3 it was observed that solids accumulation and settling in tubular digesters 

lead to the formation of a biological active floccular sludge layer with a long solids retention 

time (SRT). To account for this settling and accumulation of solids in the tubular digesters, 
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adsorption of (oo)cysts onto the solids was examined to determine the distribution of (oo)cysts in 

the solid and liquid phases. Microcosms were set-up in 50 mL bottles. 50 mL of effluent from 

Reactor 1 was collected and centrifuged for 10 minutes at 3500 rpm using a Thermo scientific 

CL2 centrifuge (West Palm Beach, FL). 15 g of solids from the dewatered sludge was placed 

into a 50 mL bottle. To this, 30 mL of supernatant was added. This mixture was spiked with 106 

non-viable Cryptosporidium parvum and Giardia lamblia. Microcosms were initially purged with 

nitrogen gas for 1 minute, thoroughly mixed for 15 minutes and incubated at 21°C in a Gyromax 

727 orbital shaker incubator (Lafayette, CA) for 24 hours. Mixing was turned off to allow for 

settling of solids to simulate conditions in the field tubular digesters. Liquid and solid samples 

were analyzed for (oo)cysts concentration as described below. The batch (oo)cysts adsorption 

study was carried out in triplicate, each study period was 24 hours. 

4.2.5 Cryptosporidium parvum and Giardia lamblia Detection and Enumeration 

For the field study, (oo)cysts presence in raw swine manure from farms using tubular 

digesters were analyzed using a commercially available rapid immune-assay, ImmunoCard 

STAT! Crypto/Giardia from Meridian Bioscience Inc. (Cincinnati, Ohio). Since the 

ImmunoCard STAT! Crypto/Giardia assay is designed for use in human fecal samples, a 

sensitivity analysis for swine manure was performed. Three grams of swine manure that had 

tested negative for the presence of (oo)cysts were spiked with 6000 non-viable (oo)cysts and 

assessed according to manufacturer's instructions. It was noted that for swine manure with spiked 

(oo)cysts, 20 minutes was required to reveal a positive Cryptosporidium parvum and Giardia 

lamblia test result compared with the 10 minutes recommended by the manufacturer. This may 

have been due to higher solids content in livestock feces compared with human waste.  
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For the batch adsorption study, liquid and solid phase samples were extracted and 

processed using the ZnSO4 density gradient method described in Kuczynka and Shelton (1999). 

A direct immunofluorescence protocol from Waterborne Inc. (New Orleans, LA) using 

fluorescein isothiocyanate (FITC) labeled mouse monoclonal antibody reagent, was used for 

Cryptosporidium parvum and Giardia lamblia (oo)cysts detection. Three aliquots were 

withdrawn from each phase and the concentration of (oo)cysts/g TS or mL in each phase was 

calculated as the average number of (oo)cysts counted per g TS or mL (mass or volume of 

sample analyzed) from each of the three aliquots divided by recovery rate. The recovery rates in 

both phases were assumed to be the same. The fraction of (oo)cysts in the liquid phase was 

calculated as: Total number of (oo)cysts enumerated in the liquid phase x 30 mL/ Total number 

of (oo)cysts enumerated in both phases. The distribution coefficient (d-), which represents the 

partitioning of (oo)cysts in the solid and liquid phases ((oo)cysts/L/ (oo)cysts/g TS) was 

calculated as the concentration of (oo)cysts in the solid phase divided by the concentration of 

(oo)cysts in the liquid phase. 

For the inactivation study, the viability of (oo)cysts during the inactivation kinetic study 

was determined through an exclusion/inclusion dye permeability assay described in Jenkins et al. 

(1997). Aliquots were stained with 4', 6-diamidino-2-phenylindole (DAPI), propidium iodide 

(PI) and Cryptosporidium parvum and Giardia lamblia specific FITC labeled mouse monoclonal 

antibodies. Viable (oo)cysts and reagents were purchased from Waterborne, Inc. (New Orleans, 

LA). The percent of viable (oo)cysts was calculated as those with blue DAPI staining but lacked 

the red PI staining: Percent nonviable (%) = 100 x Number with PI stain/(Total number - Empty 

(oo)cysts). The percent of viable (oo)cysts was calculated as the average number of (oo)cysts 

counted in 2 wells. 
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For microscopy, samples were examined using a Nikon Eclipse E200-LED (Melville, 

NY) equipped with a QBC ParaLens Advance LED fluorescent microscope attachment (Port 

Matilda, PA) with an excitation wavelength of 410-480 nm and an emission wavelength of above 

520 nm. For DAPI, a Leica DM 2000 fluorescent microscope (Allendale, NJ) with a UV filter 

(excitation wavelength of 340-380nm) was used. All samples were enumerated at 100x 

magnification using oil immersion lenses. 

4.2.6 Analytical Methods 

During the 5-week field study, all laboratory analyses were carried out at the University 

of Georgia Costa Rica campus (San Luis, Puntarenas, Costa Rica). Influent and effluent samples 

were collected and analyzed weekly from all four digesters for 5 weeks for conductivity, pH, 

BOD5, VS, TS, TN, TAN, and TP concentrations and CH4 content as described in Chapter 3. 

E.coli (indicator organism) influent and effluent concentrations were measured using 3M 

Petrifilm E. coli/Coliform Count Plates (St. Paul, Minnesota). COD and VFA measurements 

could not be carried out during the field-study because there were no facilities to dispose of the 

hazardous waste generated. Biogas production was only measured in Digester 1 using a wet tip 

gas meter (Wayne, PA). Floccular sludge from Digester 3 and 4 was also analyzed for SVI, TSS 

and VSS as described in Chapter 3. Floccular sludge characteristics from Digester 3 and 4 are 

summarized in Appendix C. During the 7-week bench-scale reactor and inactivation study, all 

laboratory analyses were carried out at USF Environmental Engineering laboratory (Tampa, FL). 

Influent and effluent samples were collected and analyzed weekly from the bench-scale 

anaerobic reactor for 7 weeks. Centrate from the bench-scale anaerobic reactor was obtained by 

centrifuging influent and effluent samples for 10 minutes at 3500 rpm using a Thermo scientific 

CL2 centrifuge (West Palm Beach, FL). Conductivity, pH, BOD5, VS, TS, TN, TAN, TP and E. 
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coli concentrations and CH4 content were analyzed as described above. Standard Methods 

(APHA, 2012) were used to measure soluble COD (5200B). Hach high range TNT test kits and a 

Hach DR 2800 spectrophotometer (Loveland, CO) were used to measure VFA (TNT 872). 

Biogas volume from Reactor 1 was collected in a 0.75 L SamplePro FlexFilm Air Sample Bag 

from SKC Inc (Eighty Four, PA) and measured by water displacement. Method detection limits 

(MDL) were (mg/L): COD (30) and VFA (50).  

4.2.7 Inactivation and Effluent Concentration Modeling 

(Oo)cysts inactivation model for first order kinetics have been used (Jenkins et al., 1998) 

to model the inactivation rate of Cryptosporidium parvum and Giardia lamblia (oo)cysts as: 

CL = CV e
(-kt) (Eq. 4.1) 

where CL is the percent viable (oo)cysts measured at time t (%),CV is the percent of viable 

(oo)cysts at time t = 0 days (%), k is the inactivation rate constant (day-1) and t is time (day). 

Even though Reactor 1 was intermittently fed (fed once a week), the (oo)cysts were held in the 

Float-A-Lyzers devices, and therefore the system was modeled as a batch reactor to estimate the 

(oo)cysts inactivation rates. 

In Chapter 3, physical and biological process models were developed and calibrated to 

understand the transformation and transport mechanisms in tubular digesters. The biological 

process model developed, indicated that solids accumulation and settling in the tubular digester 

led to the formation of a biologically active floccular sludge layer, with a SRT of more than 100 

days. A tracer study was carried out on Digester 1 and incorporated into a computational fluid 

dynamics (CFD) model to understand hydrodynamic mechanisms in the liquid phase. The liquid 

phase of Digester 1 behaved similar to a completely stirred tank reactor (CSTR).  By applying 

the CSTR model to all of the digesters studied, HRTs ranging from 23 to 180 days were 



www.manaraa.com

72 

 

calculated, as shown in Table 4.1. An overall mass balance on the number of (oo)cysts in a 

tubular digester was written as: 

Rh
R< = SG\(0) − SG0 − Ih (Eq. 4.2) 

where h is the total number of (oo)cysts in the digester, G0 is the (oo)cysts concentration in the 

liquid phase of the digester ((oo)cysts/L), G\ (0) is the concentration of (oo)cysts in the influent 

((oo)cysts/L), Q is the tubular digester working volume (L), S is the flow rate (L/day) and I is 

the inactivation rate constant (day-1). Note that due to the low solids concentrations observed in 

the digester’s effluents, the concentration of (oo)cysts in the effluent was assumed to be the same 

as the concentration of (oo)cysts in the liquid phase of the digester.  Due to solids accumulation 

and settling in the tubular digesters, adsorption of (oo)cysts to the solid phase was also 

considered as a concentration-altering mechanism in addition to inactivation.  Therefore, the total 

number of (oo)cysts in the digester can be described by: 

h = h('')/i*0* &1 j&k.&- + h('')/i*0* &1 *'j&- (Eq. 4.3) 

where h('')/i*0* &1 j&k.&- = G0 Q and h('')/i*0* &1 *'j&- = eYelQ. e is the number of (oo)cysts 

adsorbed on the solids per g TS of the floccular sludge layer ((oo)cysts/g TS) and was considered 

to be a linear function of the concentration of (oo)cysts in the liquid: 

e = d-G0 (Eq. 4.4) 

where d- is the distribution coefficient, representing partitioning of (oo)cysts between the solid 

and liquid phases (L/ g TS). Values for d- were determined from laboratory studies, as described 

in Section 4.2.4. Yel is the total solids concentration in the digesters’ floccular sludge layer. 

Values for Yel were determined for each digester as the TSS concentrations (values are reported 

in Chapter 3 and Appendix C). Substitution into Equation 4.3 yields the following expression for 

the number of (oo)cysts in the digester: 
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h = G0 Q(1 + d-Yel) (Eq. 4.5) 

Equation 4.2 can then be re-written as: 

RG0 Q(1 + d-Yel)
R< = SG\(0) − SG0 − IG0 Q(1 + d-Yel) (Eq. 4.6) 

Assuming the term Q(1 + d-Yel) is constant over time, Equation 4.6 can be expressed as: 

RG0 
R< = 1

m` G\(0) − 1
m` G0 − IG0 (Eq. 4.7) 

where m  is equal to V/Q (the HRT) and the retardation factor, R is equal to (1 + d-Yel).  

Pigs have been shown to shed viable (oo)cysts for 10-28 days following a second-order 

polynomial distribution (Nydam et al., 2001; Guselle et al., 2003). To accommodate this change 

of influent (oo)cysts concentration with time and to simplify the tubular digester (oo)cysts 

model, a finite difference approximation was used for the differential term in Equation 4.7: 

RG0
R< ≅  G0o∆0 − G0

∆<  (Eq. 4.8) 

The overall mass balance on the (oo)cysts in the tubular digester was re-written as: 

G0o∆0 − G0
∆< =  1

m` G\(0) − 1
m` G0 − IG0 (Eq. 4.9) 

The concentration of (oo)cysts in the tubular digester effluent was expressed as: 

G0o∆0 = G0 q1 − ∆<
m` − I∆<r + ∆<

m` G\(0) (Eq. 4.10) 

Due to the sporadic shedding pattern of pigs, the initial condition was for the period of time 

before pigs shed (oo)cysts was < =  0  G0 = 0. The influent concentration was assumed to follow 

the following: 

< < 1 R  G\ = 0 

1 ≥ < ≥ 19 R  G\ = t<D + u< + v 

< > 19 R  G\ = 0 

(Eq. 4.11) 
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The first and third equations describe the periods before and after the period of infection.  During 

the period of time when pigs are shedding (oo)cysts the influent concentration assumed to follow 

a second order polynomial based on prior studies (Nydam et al., 2001; Yui et al., 2014). A 

maximum of 19 days of shedding has been reported for pigs less than 6 months old. The 

concentration of (oo)cysts at day 1 of shedding was assumed to be <1000/g TS and the 

concentration of (oo)cysts at day 19 was <100/g TS. It was also assumed that maximum 

concentration of (oo)cysts shed by the pigs peaked at day 9 (Nydam et al., 2001; Yui et al., 

2014).  Values for G\ (0) during the shedding period were multiplied by the influent TS 

concentration from each digester to convert the units from (oo)cysts/ g TS to (oo)cysts /L. The 

polynomial extrapolation of data for pigs (oo)cysts shedding for 19 days and expression of 

G\ (0) = x (<) are provided in Appendix C as Figure C.1. 

4.2.8 Data Analysis 

Statistical analysis was performed using a one-way analysis of variance (ANOVA) test 

using GraphPad Prism version 6.0 for Windows 8 (San Diego, California). p values less than 

0.05 were considered statistically significant and values less than 0.0001 were considered 

extremely significant. Nonlinear regression analysis of one-phase exponential decay of the 

observed inactivation data was performed to determine the inactivation rate constant (k) within a 

95% confidence interval using GraphPad Prism. Oracle Crystal Ball (Redwood City, CA) was 

used for Monte Carlo simulation. A Monte Carlo uncertainty analysis was performed by running 

1,000 trials with selected parameter values within the range from experimental data to determine 

which model inputs affected the (oo)cysts effluent concentration. The inactivation rate constant 

and retardation factor were considered uncertain inputs with uniform distribution. Crystal Ball 

calculates the sensitivity by ranking what inputs significantly correlate with the output while the 
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simulation is running. If an input and output have a high correlation percent, it means that the 

input will have a significant impact on the output. The percentage is the rank of correlations 

normalized to 100%. A positive contribution means that the input will increase the output and a 

negative contribution means the input will decrease the output. 

4.3 Results and Discussion 

4.3.1 Field and Bench-Scale Anaerobic Digester Performance 

Average influent and effluent characteristics from Reactor 1, which was operated for a 

period of 7 weeks, and the field study of four tubular digesters conducted over 5 weeks in Costa 

Rica are shown in Table 4.3.  Influent soluble COD and VFA concentrations in Reactor 1 were 

1.46 ± 0.28 g COD/L and 306 ± 66.3 mg COD/L respectively. Effluent soluble COD and VFA 

concentrations in Reactor 1 were 1.08 ± 0.16 g COD/L and 310 ± 44.1 mg COD/L respectively. 

These results indicate three important points. 

First, with regard to the reduction of organic matter and solids, on average, the four 

tubular digesters exhibited BOD5 and VS removal efficiencies of approximately 98% and 87%, 

respectively, while removal efficiencies in Reactor 1 were significantly lower.  Process modeling 

in Chapter 3 revealed that solids settle and accumulate in these tubular digesters over time, 

resulting in the formation of a biologically active sludge layer with a SRT that is higher than the 

mean liquid HRT.  Due to the combined effects of the accumulation of solids and the conversion 

of organic substrate to biogas, tubular digesters can achieve higher removal of solids and 

associated organic matter than other types of digesters.  Lansing et al. (2010) found that reported 

VS removal efficiencies among completely-mixed and non-mixed baffled digesters averaged 

approximately 50%, similar to the removal observed in this study’s Reactor 1.  The reduction of 
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TP observed in the tubular digesters also provides evidence for solids accumulation, as a 

significant fraction of TP is associated with the solids (Lansing et al., 2010; Chapter 3). 

The second important point was that the removal of E. coli was higher in the tubular 

digesters than in Reactor 1.  The tubular digesters exhibited E. coli reductions of between 1.0 and 

1.8 log10 while a 0.4 log10 removal was observed in Reactor 1.  In other studies investigating 

tubular digesters in Costa Rica, E. coli removal efficiencies similar to those observed in this 

study were reported (Lansing et al., 2010).  Solids settling and accumulation may play a 

significant role in reducing effluent E. coli concentrations.  E. coli has been shown to be closely 

associated with the solids fraction (Lansing et al., 2010), causing them to remain in the digester 

for a period longer than the HRT. This extended period inside the tubular digester could 

contribute to a greater level of inactivation. 

Lastly, CH4 content of the biogas was similar in Reactor 1 and in the tubular digesters.  In 

the tubular digesters, CH4 content ranged from 60% to 71%, while the CH4 yield measured in 

Digester 1 averaged 0.204 L CH4 / g VS.  The CH4 content and CH4 yield of Reactor 1 averaged 

65% and 0.161 L CH4 / g VS, respectively.  These results are similar to those reported in 

previous studies.  Tubular digesters in Peru, operated between 20°C and 25°C, exhibited CH4 

contents between 60% and 67%, and the average CH4 yield was calculated to be 0.22 L CH4 / g 

VS (Ferrer et al., 2011).  Lansing et al. (2010) co-digesting swine waste with used cooking 

grease in tubular digesters at an average temperature of 25.5°C, reported similar CH4 content, 

between 63% and 70%, with a CH4 yield of 0.31 L CH4 / g VS, which was higher than this study. 

The greater level of biogas production and CH4 yield observed by Lansing et al. (2010) was 

likely attributable to the fact that swine manure was being co-digested with used cooking grease, 

a carbon-rich material known to have a positive effect on biogas production (Cirne et al., 2007). 
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4.3.2 Inactivation of Cryptosporidium parvum and Giardia lamblia 

Inactivation kinetics for Cryptosporidium parvum and Giardia lamblia (oo)cysts in the 

three bench-scale reactors are shown in Figure 4.1. A fit of the inactivation model to the 

observed data of Reactor 1 is also illustrated in Figure 4.1. The log-removal rates for each of the 

3 reactors are shown in Table 4.2. The inactivation rate constants for Cryptosporidium parvum 

and Giardia lamblia were 0.056 ± 0.013 and 0.726 ± 0.064 day-1, respectively, in Reactor 1. 

From these results, two conclusions were drawn. 

First, there were no significant differences between log removal in Reactors 1 and 2 for 

either Giardia lamblia (p= 0.78) or Cryptosporidium parvum (p=0.29) (Table 4.2), however, 

inactivation rates were significantly lower in Reactor 3 (PBS control). These results indicate that 

at 20°C and neutral pH, the presence of TAN and VFA significantly increased the inactivation 

rate of the (oo)cysts when compared with the control reactor. Several studies have demonstrated 

that exposing (oo)cysts to free ammonia can increase the rate of inactivation (Jenkins et al., 

1998; Reinoso et al., 2007). Free ammonia that is highly soluble penetrates the (oo)cysts walls 

denaturing cell proteins by disrupting the intramolecular hydrogen bonds (Kidd, 2011 ). This 

process causes inactivation of the parasites. Reinoso et al. (2007) observed a 0.39 and 0.83 log 

removals when they exposed Cryptosporidium parvum oocysts to 5 and 50 mg NH3/L 

respectively for 4 days at 25°C. In this study, the free ammonia concentrations in Reactors 1 and 

2 were below 0.005 mg NH3/L. Although the free ammonia concentration was significantly 

lower than in previous studies, the longer exposure time (24 days) may have increased the rate of 

inactivation. In addition, the presence of VFA may have also contributed to the inactivation. The 

presence of short chain VFA such as acetate and propionate, commonly present during anaerobic 

digestion, have been shown to cause inactivation of bacteria such as Salmonella sp. and parasites 
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such as Ascaris sp. (Butkus et al., 2011; Chen et al., 2012). This inactivation is attributed to 

diffusion of VFA molecules across the pathogen membrane causing acidification of the cell 

(Butkus et al., 2011). The change of pH in the cell also causes protein denaturation and DNA 

damage (Kidd, 2011). Although VFAs could not be measured during the field study, prior 

studies of tubular digesters treating livestock waste have reported VFA concentrations of 300-

600 mg/L which were similar to values in Reactors 1 and 2 (Usack et al., 2014). Inactivation due 

to TAN and VFA were not investigated independently since the objective of this study was to 

create environmental conditions similar to those observed in the field tubular digesters.   

The second conclusion was that the rate of Giardia lamblia inactivation was significantly 

higher than the rate of Cryptosporidium parvum inactivation. This difference in inactivation is 

most likely due to the physicochemical characteristics of the Giardia lamblia cysts and the 

Cryptosporidium parvum oocysts. A Giardia lamblia cyst wall is comprised of a 300-500 nm 

thick wall with 2 layers (Dumétre et al., 2011). The outer layer is made from a matrix of 

cysteine-rich proteins and the inner layer is a membranous wall. A Cryptosporidium parvum 

oocyst wall is 50-80 nm thick with 3 layers; an outer layer that is comprised of a glucose-rich 

glycocalyx carbohydrate membrane, a central layer formed from lipids and proteins and an inner 

wall made from a matrix of lectin proteins (Dumétre et al., 2011). Although the Giardia lamblia 

cyst wall is thicker, the multilayer composition and rigidity of the Cryptosporidium parvum 

oocyst wall layers adds complexity (Samuelson et al., 2013). This complexity may lead to slower 

inactivation of Cryptosporidium sp. compared to Giardia sp. This trend of Giardia sp. 

inactivation being greater than Cryptosporidium sp. under the same environmental conditions has 

also been noted in other studies (Olson et al., 1999). Based on the first order decay kinetics 

model used to estimate the inactivation rate constant, exposing Cryptosporidium parvum oocysts 
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to the same environmental conditions for 65 days would be required to achieve a similar log 

removal as that observed for Giardia lamblia in Reactor 1.    

4.3.3 Phase Distribution 

 Results from the phase distribution study for Cryptosporidium parvum and Giardia 

lamblia (oo)cysts are shown in Figure 4.2. The concentration of (oo)cysts in the liquid phase was 

1.49x107 ± 1.25x105 and 1.33x107 ± 7.50x105 (oo)cysts/L of Cryptosporidium parvum and 

Giardia lamblia  respectively. The concentration of (oo)cysts in the solid phase was 35,125 ± 

125 and 36,750 ± 750 (oo)cysts/ g TS of Cryptosporidium parvum and Giardia lamblia  

respectively. Distribution coefficients were 0.0024 ± 0.00066 L/g TS and 0.0028 ± 0.00090 L/g 

TS for Cryptosporidium parvum and Giardia lamblia respectively. These results indicate that 

both parasites have a high attraction to the biosolids during anaerobic digestion. Although the 

difference in the fraction of both parasites in either of the phases was not significantly different 

(p=0.08), the interactions between the (oo)cysts and solids, leading to their adhesion to solids are 

different. Zeta potential and ionic strength of the solution that the (oo)cysts are in affects the 

surface charge and repulsion or attraction of (oo)cysts to solids. Zeta potential, which refers to 

the electrostatic repulsion force between particles with the same charge, decreases with 

increasing ionic strength (Hsu and Huang, 2002). As the zeta potential decreases, the (oo)cysts 

become more negatively charged at neutral pH. This makes the (oo)cysts behave like colloidal 

particles adhering to the solids (Hsu and Huang, 2002). Since Cryptosporidium sp. oocysts tend 

to be more negatively charged than Giardia sp. cysts, the surface charge on Cryptosporidium sp. 

oocysts is the main contributing factor to their adsorption to solids. It was observed that 

conductivity was greater in the effluent compared to the influent in Reactor 1 and in the four 

tubular digesters (Table 4.3). Based on this, it is likely that the Cryptosporidium sp. oocysts in 
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the tubular digester would be associated with the solid phase. Although, the surface charge of 

Giardia sp. is also negative, the surface hydrophobic nature of these cysts plays a more 

significant role in their adhesion to solids (Dai et al., 2004). This is due to the physicochemical 

characteristics of Giardia sp. cysts' outer wall. As discussed previously, the outer wall of Giardia 

sp. cysts is composed of cysteine-rich proteins that are hydrophobic in nature (Dai et al., 2004; 

Dumétre et al., 2011). It should noted that a preliminary study on (oo)cysts phase distribution 

over a longer period of time (21 days) was carried out to determine if the (oo)cysts phase 

distribution changed with time. The preliminary results are shown in Appendix C and indicate 

the (oo)cysts did re-suspended in the liquid phase over time. Therefore further research is needed 

to determine the mechanisms affecting phase distribution over longer periods of time.  

4.3.4 Concentration of (Oo)cysts in Tubular Digester Effluent 

During the field-study period, feces from 22 pigs (8 suckling pigs, 11 growing pigs aged 

1 to 6 months, 2 sows and 1 boar) were sampled for 2 weeks for the presence of 

Cryptosporidium parvum or Giardia lamblia. None of the feces samples produced positive 

results for either Cryptosporidium parvum or Giardia lamblia. Although the pigs were not 

shedding viable (oo)cysts at the time of this study, Cryptosporidium sp. and Giardia sp. is a 

public health concern for the Monteverde community (Peña, personal communication, July, 

2014). Since pigs less than 6 months old have been shown to shed more Cryptosporidium sp. 

oocysts compared to older pigs (Yui et al., 2014) and most of the farmers in San Luis de 

Monteverde using tubular digesters generally have pigs less than 4 months old, the maximum 

concentration of (oo)cysts in the influent was taken from the literature as G\ (0) = 90,000 

oocysts/g TS and 54,000 cysts/g TS (Yui et al., 2014). These values represent the average 

concentration of (oo)cysts measured from 334 pigs less than a month to 6 months old(Yui et al., 
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2014).  Values for G\ (0) were multiplied by the influent TS concentration from each digester to 

convert the units from (oo)cysts/ g TS to (oo)cysts /L. Effluent (oo)cysts concentrations were 

estimated based on the assumptions described earlier.  

Modeled effluent concentrations of viable Cryptosporidium parvum and Giardia lamblia 

(oo)cysts for the Digester 1, 3 and 4 are shown in Figure 4.3. Digester 2 was not included in the 

model because TSF concentrations were not evaluated for this digester. The model results 

indicate that more than 3 log removal was predicted in all the digesters by 75 days after an 

outbreak of infection for Cryptosporidium parvum. More than a 4 log removal was predicted in 

the 3 digesters by day 20 for Giardia lamblia. This significant difference in log removal between 

the two parasites can be attributed to the differences in the inactivation rates (Section 4.3.2). A 

Monte Carlo sensitivity analyses (as described in Section 4.2.8) was carried out to determine 

which tubular digester model inputs significantly influenced the (oo)cysts effluent concentration. 

For Cryptosporidium parvum, in the three digesters, the sensitivity analyses indicated that the 

retardation factor, R, had a -96.5 ± 2.78% contribution to variance while the inactivation rate 

constant, k, had a -3.53 ± 2.4% contribution to variance. For Giardia lamblia, in the three 

digesters, the sensitivity analyses indicated that the retardation factor, R, had a -96.6 ± 2.01% 

contribution to variance while the inactivation rate constant, k, had a -3.43 ± 0.69% contribution 

to variance. These results indicate that the retardation factor that is a function of HRT, TSF and 

Kd was the main contributing factor to the (oo)cysts effluent concentration. The inactivation of 

(oo)cysts in the tubular digesters is enhanced due to adhesion of (oo)cysts to solids and 

retardation of transport through the digester. Since solids accumulation in the tubular digesters 

has its benefits, further research is needed to assess the fate of (oo)cysts during required 

maintenance of the tubular digesters. If periodic desludging of the tubular digester is required, 
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best management practices need to be utilized to ensure safe handling and disposal of the 

biosolids.  

The TSF concentration in the digesters may have been influenced by the TS loading rate. 

The digester’s TS loading rates were 0.28, 0.069 and 0.36 g TS/L-day for Digesters 1, 3, and 4 

respectively. Digester 4 with the highest TS loading rate also had the highest TSF concentration 

(Table C.2). An increase in TS loading rate may encourage increased solids accumulation 

forming a dense floccular sludge layer in the digester which may promote further adhesion of 

(oo)cysts to the solids. Increasing the HRT also decreases the (oo)cysts effluent concentration as 

the pathogens are exposed to inactivating environmental conditions for a longer period of time. 

These results show that a combination of a high TSF and HRT affects the concentration of 

(oo)cysts in the effluent. Farmers can be encouraged to decrease the amount of water used to 

clean their pig barns to increase their HRT. Although the HRT, TSF and TS loading rates 

between the tubular digesters were significantly different, all the farmers reported having enough 

biogas for 4-7 hours per day which was adequate to meet their daily household cooking needs. 

Therefore, increasing the HRT may decrease the concentration of viable (oo)cysts in the effluent 

and not affect the biogas production. 

Lastly, although the swine manure analyzed in this study did not produce positive results 

for either Cryptosporidium parvum or Giardia lamblia, the model predicted a significant 

decrease in the concentration of (oo)cysts in the effluent compared to the concentration of 

(oo)cysts in the raw swine waste during an infection outbreak. Apart from biogas production, the 

reduction in pathogen concentration is an important environmental and public health benefit to 

communities with livestock using tubular digesters. The use of tubular digesters has gained 

interest among dairy farmers in rural Costa Rica. Among livestock, cattle are the main reservoir 
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for Cryptosporidium sp. (Dufour et al., 2012), thus assessing how the environmental conditions 

and physical processes in tubular digesters affect the fate and viability of these protozoan 

parasites is crucial. In addition, some of the farmers in San Luis de Monteverde using tubular 

digesters co-digest cattle and swine manure. In San Luis de Monteverde and elsewhere in the 

developing world, farmers are often encouraged to use the digester effluent as a soil amendment 

to increase crop yields and decrease the cost associated with purchasing mineral fertilizers 

(Chapter 2). Therefore, further research is needed to assess the risk of infection when farmers 

with cattle and/or swine handle the tubular digester effluent to apply to crops and when humans 

eat crops fertilized with this effluent.  

4.4 Conclusions 

The low effluent organic matter and E. coli concentrations observed in this study were 

attributed to the solids settling and accumulation in the tubular digester leading to the formation 

of an active floccular sludge layer. Cryptosporidium parvum and Giardia lamblia inactivation 

studies indicated that at neutral pH, a temperature of 21°C, VFA concentration of about 300 

mg/L and TAN concentration of about 240 mg NH4
+-N/L led to about 1.56 log10 removal for 

Giardia lamblia and less than 1.00 log10 removal for Cryptosporidium parvum over 24 days. A 

tubular digester model to estimate the concentration of viable (oo)cysts in the tubular digesters 

effluents indicated that tubular digester TS loading rate, concentration of TS in the floccular 

sludge layer and HRT were the main contributing factors to the concentration of viable (oo)cysts 

in the tubular digesters effluent. 
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Table 4.1: Average operating parameters for the bench-scale anaerobic reactor (Reactor 1) (n=7) 
and four tubular digesters (n=5). 

Parameter Unit 
Reactor 

1 

Digester 

1 

Digester 

2 

Digester 

3 

Digester 

4 

Working volume L 0.90 12000 9000 9000 9000 

Temperature °C 
21 

± 0.10 
20.7 

± 0.48 
20.9 

± 0.00 
21.5 

± 0.00 
23.8 

± 0.75 

Influent flow L/day 
0.048 
± 0 

543 
± 10 

90 
± 30 

50 
± 4 

164 
± 30 

HRT day 24 23 100 180 55 

 

Table 4.2: 24 day log10 removal rates (n=2). 

Reactor Unit Cryptosporidium parvum Giardia lamblia 

Reactor 1 log10/24 days 0.55 ± 0.098 1.56 ± 0.240 
Reactor 2 log10/24 days 0.73 ± 0.150 1.34 ± 0.035 
Reactor 3 log10/24 days 0.31 ± 0.050 0.62 ± 0.024 
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Table 4.3: Average influent and effluent characteristics from the bench-scale anaerobic reactor (Reactor 1) (n=7) and four tubular 
digesters (n=5). 

Parameter Unit Reactor 1 Digester 1 Digester 2 Digester 3 Digester 4 

  
Influent Effluent Influent Effluent Influent Effluent Influent Effluent Influent Effluent 

BOD5 g/L 
0.927 
± 0.14 

0.567 
± 0.098 

5.09 
± 0.30 

0.030 
± 0.015 

2.99 
± 1.26 

0.126 
± 0.023 

12.4 
± 2.45 

0.155 
± 0.008 

15.0 
± 1.5 

0.074 
± 0.03 

TS g TS/L 
32.1 

± 3.88  
18.9 

± 2.60 
6.35 

± 2.87 
0.77 

± 0.25 
19.6 

± 5.96 
4.22 

± 3.60 
12.4 

± 5.88 
4.49 

± 1.39 
19.6 

± 2.72 
4.99 

± 0.53 

VS g VS/L 
20.0  

± 1.32 
12.2 

± 1.03 
5.17 

± 2.44 
0.58 

± 0.24 
15.4 

± 5.36 
0.81 

± 0.01 
9.75 

± 5.08 
2.26 

± 1.65 
15.9 

± 1.22 
2.26 

± 0.44 

TAN mg NH4
+-N/L 

25.4 
± 6.96 

176 
± 56.5 

140 
± 49.0 

52.8 
± 4.66 

224 
± 79.2 

254 
± 16.9 

193 
± 99.8 

195 
± 7.54 

180 
± 56.6 

165 
± 52.8 

Soluble TN mg N/L 
298 

± 30.7 
219 

± 81.1 
300 

± 23.6 
49.3 

± 5.12 
319 

± 120 
227 

± 12.5 
350 

± 75.0 
186 

± 1.00 
513 

± 112 
303 

± 27.5 

Soluble TP mg PO4/L 
154 

± 67.0 
521 

± 31.3 
402 

± 126 
33.9 

± 8.91 
573 

± 72.0 
228 

± 28.3 
333 

± 131 
25.0 

± 0.00 
503 

± 81.0 
139 

± 0.00 

pH 
 

7.48 
± 0.09 

7.06 
± 0.057 

7.08 
± 0.62 

7.04 
± 0.14 

7.96 
± 0.57 

7.74 
± 0.19 

6.57 
± 1.18 

7.50 
± 0.14 

5.83 
± 0.12 

7.67 
± 0.09 

E. coli 
104 

CFU/100mL 
478  

± 0.00 
188  

± 1.30 
68.5 

± 1.30 
6.40 

± 0.00 
22.5 

± 21.0 
2.00 

± 1.30 
79.0 

± 32.9 
21.1 

± 1.18 
89.0 

± 34.3 
3.13 

± 2.35 

Conductivity µS/m 
188 

± 6.33 
271 

± 100 
198 

± 0.0 
1339 

± 22.3 
3923 

± 1753 
5201 

± 1341 
4499 

± 1200 
5109 
± 461 

6537 
± 896 

7906 
± 543 

Methane 

content 
% 

65 
± 0.0 

71.0 
± 10 

71.0 
± 10 

60.8 
± 6.20 

65.0 
± 5.40 

CH4 yield 
L CH4/g VS 

added 
0.161 

± 0.018 
0.204 

± 0.099 
n/m n/m n/m 

n/m; not measured 
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Figure 4.1: Inactivation kinetics of Giardia lamblia cysts (A) and Cryptosporidium parvum 

oocysts (B). Each data point represents the mean ± standard deviation of four replicates, with 
150 cysts enumerated per replicate. Reactor 1 (□); Reactor 2 (◊); Reactor 3 (○); Model (─).  
 

 

Figure 4.2: (Oo)cysts phase distribution for Cryptosporidium parvum oocysts (A) and Giardia 

lamblia cysts (B). Error bars represent standard deviation.  
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Figure 4.3: Modeled effluent concentrations of viable Cryptosporidium parvum oocysts (A) and 

Giardia lamblia cysts (B) in the three tubular digesters.  
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Chapter 5: 

 

Risk of infection from Cryptosporidium parvum and Giardia lamblia4 

5.1 Introduction  

Around the world, food-borne and water-borne outbreaks have been caused by pathogens 

from livestock wastes. Runoff from land applied livestock waste has been the main contributing 

factor to these outbreaks (Brooks et al., 2012; Dufour et al., 2012). Presence of pathogens such 

as Cryptosporidium sp., Giardia lamblia, Ascaris lumbricoides, Entamoeba histolytica, E. coli 

and fecal coliforms in raw vegetables sold in open markets in Costa Rica, Egypt and Nigeria has 

been attributed to use of irrigation water contaminated by livestock waste (Monge and 

Chinchilla, 1996; Damen et al., 2007; Eraky et al., 2014). Although there are a variety of 

zoonotic pathogens that cause illness to humans, two protozoan parasites, Cryptosporidium 

parvum and Giardia lamblia, and three bacteria, Campylobacter jejuni, Salmonella sp. and E. 

coli O157:H7 are the main zoonotic pathogens of concern according to the World Health 

Organization (WHO) (Dufour, 2012). The reasons for this include; (1) disease from these 

pathogens occur in healthy humans and can result in serious illness and/or death, (2) these 

pathogens are distributed globally, (3) they are resistant to commonly used water and wastewater 

treatment technologies, such as chlorination, (4) the livestock genotypes are closely related to 

human genotypes, and (5) water transmission is the main route of exposure (Dufour, 2012).  

                                                           
4 This chapter is adapted from a manuscript under preparation by Kinyua, M.N., Wald, I., Céspedes, F.C., Ergas, S.J. 
“Does the use of tubular digesters to treat livestock waste lower the risk of infection from Cryptosporidium parvum 
and Giardia lamblia?” 
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Livestock waste can contain high loads of these pathogens, in particular the protozoan 

parasites, Cryptosporidium parvum and Giardia lamblia. Cryptosporidium parvum accounts for 

23.7% of all worldwide waterborne outbreaks annually while Giardia lamblia  infects about 2.8 

billion people worldwide annually (Dufour et al., 2012). The low infectivity of the protozoan 

parasites also increases their associated public health concern. One Giardia lamblia cyst or 

approximately nine Cryptosporidium parvum oocysts have been shown to cause illness in 

humans (Erickson et al., 2006). Young, old and immune-compromised individuals are 

particularly susceptible to disease from infection with these pathogens (Haas et al., 1999).  

Although policies and regulations management of livestock waste may be in place in 

developing countries, successful enforcement is often lacking due to lack of commitment by 

local and national authorities, lack of infrastructure for regular monitoring and lack of education 

on the negative environmental and public health consequences from mismanagement of livestock 

waste (Chapter 2). In countries where national and local commitment is evident, small-scale 

anaerobic digesters are promoted for livestock waste management and energy production. In 

addition to environmental and energy benefits, the use of small-scale anaerobic digestion 

systems to treat livestock waste in the developing countries has several social, public health and 

agricultural benefits as described in Chapter 2. However, the use of anaerobic digestion effluents 

to achieve agricultural benefits still needs monitoring due to the presence of pathogens in the 

effluent. Anaerobic digestion operating parameters such as retention times and temperature and 

chemical conditions such as pH, free ammonia and volatile fatty acids (VFA) concentrations 

have been shown to inactivate pathogens during treatment of livestock waste (Chen et al., 2012; 

Chapter 4, Manser et al., 2015). Unfortunately, exposing Cryptosporidium parvum and Giardia 

lamblia (oo)cysts to potentially inactivating conditions does not guarantee absence of viable 
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(oo)cysts in the anaerobic digestion effluents (Chauret et al., 1999; Chapter 4). In developed 

countries, operating parameters and chemical conditions can be monitored and controlled to 

promote greater inactivation of pathogens. In small-scale anaerobic digesters used in the 

developing world operating parameters, such as the retention time, can be adjusted to promote 

greater pathogen inactivation. However, determining the risk of infection from Cryptosporidium 

parvum and Giardia lamblia, associated with handling raw livestock waste and anaerobic 

digestion effluents, is still critical in an effort to empower communities in the developing world 

by protecting their health.  

The risk of infection can be determined through the use of quantitative microbial risk 

assessment (QMRA). QMRA is a useful tool that is used to estimate the risk of a health effect to 

humans from exposure to pathogens. Health effects include infection, illness and or death. By 

carrying out a QMRA, management practices that reduce exposure can be put in place. A risk-

based management strategy is more attractive than a treatment technology based management 

strategy due to its versatility, depending on the region, location, culture, socio-economic status 

and other community dependent variables (Razzolini et al., 2011). The QMRA process involves 

four steps: 

• Step 1: Pathogen identification - This step involves identifying pathogens of concern for 

the target population and describing the symptoms and rates of infections from the 

pathogen. For this study Cryptosporidium parvum and Giardia lamblia were chosen for 

the reasons described earlier. 

• Step 2: Exposure assessment - This step involves estimating the concentration of 

pathogens at different exposure pathways and the frequency of exposure such as daily 

water intake. Examples of agriculturally relevant exposure pathways include farmers 
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handling raw manure, farmers handling anaerobic digester effluent and farmers tending to 

soil fertilized with raw or treated livestock waste (Mara and Horan, 2003; Brooks et al., 

2012).   

• Step 3: Dose response - This step involves the use of epidemiological studies to 

determine the capacity of the pathogens identified in step 1 to cause a health effect to 

humans. During the epidemiological studies, human volunteers ingest the pathogen of 

concern at varied doses. Dose is the number of pathogens ingested per kg of body weight. 

Dose response curves are then generated based on health outcomes. A dose response 

curve is a mathematical relationship between the concentrations of a pathogen a human 

ingests (dose) and the overall health effect (response) to the pathogen. These curves also 

generate the minimum infective dose (ID50) and dose response parameters (Haas et al., 

1999). 

• Step 4: Risk characterization - This step involves integrating data from steps 1, 2, and 3 

into a mathematical model to calculate the risk of a health effect. Due to variability 

(mean, minimum, maximum and standard deviation) and uncertainty of the inputs from 

steps 1 to 3, a sensitivity analysis is conducted. This is carried out using a Monte Carlo 

simulation to better understand how pathway specific inputs from steps 1 to 3 affect the 

final risk estimated (Haas et al., 1999). 

There are two types of QMRA models that are used to assess the probability of a health 

effect; individual-based and population-based risk models (Cooper et al., 2012). The individual-

based risk model estimates the probability of infection after a single exposure event. Recurring 

exposure events are considered as independent single exposure events. Individual immunity to 

the pathogens decreases the probability of a health effect and secondary transmission increases 
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the probability of a health effect. Influences from individual immunity and secondary 

transmission are assumed to be negligible as they cancel each other out (Cooper et al., 2012). In 

a population-based risk model, only a fraction of the population that is susceptible to infection 

and illness is considered. This fraction of the population is determined based on immunity, 

duration of infection and the number of infected people with whom the susceptible population 

comes into contact (Cooper et al., 2012). Due to the complexity of the population-based risk 

model, the individual-based risk model was used for this study. 

Several studies have evaluated the concentration of Cryptosporidium parvum oocysts, 

and Giardia lamblia cysts and the risk of infection associated with exposure at various pathways 

to these pathogens in raw livestock waste, raw domestic wastewater and class B biosolids 

(Heitman et al., 2002; Hutchison et al., 2004; Brooks et al., 2012a; Harder et al., 2014). Class B 

biosolids are domestic wastewater sludge which is treated through, anaerobic digestion (35-

60°C), aerobic digestion, composting, air drying or lime stabilization (USEPA, 2003). Class B 

biosolids produced from an anaerobic digestion system at municipal wastewater treatment 

facilities differ from effluents from small-scale anaerobic digestion systems treating livestock 

waste due to digestion treatment temperatures.  

The acceptable individual annual risk of infection from Cryptosporidium parvum and or 

Giardia lamblia according WHO and USEPA is 10-4. This means for every 100,000 people, only 

10 people can get infected in a year (USEPA, 2001). Brooks et al. (2012) investigated the risk of 

infection from occupational exposure to soil contaminated with Cryptosporidium parvum from 

raw cattle waste and class B biosolids. This study found that over the course of 30 days the risk 

of infection was greater during exposure to soils fertilized with raw cattle waste (3 x 10-4) 

compared to soil fertilized with class B biosolids (1 x 10-5). This can be attributed to the lower 
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concentration of Cryptosporidium parvum in the class B biosolids. Another study investigated 

the risk of infection from Giardia sp., and Cryptosporidium sp. from consumption of crops 

irrigated with wastewater that had undergone tertiary treatment. The annual risk of infection 

from Giardia sp., and Cryptosporidium sp. was 8.54 x 10-5 and 2.04 x 10-4 respectively (Cooper 

et al., 2012). These studies indicate that the treatment of domestic wastewater reduces the risk of 

infection at various exposure pathways. However, there are no prior studies that have 

investigated how the treatment of livestock waste through small-scale anaerobic digestion 

systems used in developing countries influences the risk of infection from Giardia lamblia and 

Cryptosporidium parvum when the effluent from the systems is used as a soil amendment. 

Assessing the health risk through a QMRA, to provide a guideline for safe reuse of livestock 

waste for agricultural purposes is critical. This study investigated the concentration of 

Cryptosporidium parvum and Giardia lamblia (oo)cysts in dairy cattle and swine waste in two 

communities in rural Costa Rica. Based on the pathogen concentrations in the raw livestock 

waste and modeled (oo)cysts effluent concentrations from small-scale tubular anaerobic digester 

systems (Chapter 4), a QMRA was carried out to determine the risk of infection from exposure 

to these pathogens at different exposure pathways. The exposure pathways assessed were fomite 

contamination, soil contamination and crop contamination from runoff. The influence of using 

small-scale tubular anaerobic digestion systems on the risk of infection was also analyzed. 

5.2 Materials and Methods 

5.2.1 Site Description and Tubular Digesters 

 This study was carried in two rural communities located on the Pacific Slope of the 

Tilarán Mountain Range of Costa Rica. The first community is San Luis de Monteverde (N 10' 

16.973" W 84' 47.882") located in the province of Puntarenas, with an altitude range of up to 
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1200 m above sea level. San Luis de Monteverde has a population of approximately 500 people. 

The main economic activities in San Luis de Monteverde are small-scale farming and eco-

tourism.  Households in San Luis de Monteverde typically have about 10 cows and 4-10 pigs. 

Eight households in San Luis de Monteverde installed tubular anaerobic digesters to promote 

energy production and reduce livestock waste pollution. Three of the households with tubular 

digesters co-digest swine and cattle waste, four treat only swine waste and one treats only cattle 

waste. The biogas produced is sufficient to meet household daily energy demands for cooking 

for an average family of five people (Chapter 3).  

The second community is La Florida (N 10° 23' 45.33" W 84° 54' 10.2492") located in 

the province of Guanacaste, with an altitude range of up to 900 m above sea level. La Florida has 

a population of approximately 150 people. La Florida is located close to the continental divide 

where the climate and presence of rich volcanic soils, make it ideal for tropical dairy farming. 

The predominant dairy farming system produces high quality varieties of grass and cow breeds. 

Most dairy farms in La Florida are family owned and operated. The dairy farms have about 26-

80 cows and most of the milk produced in La Florida is sold to Costa Rica's largest dairy 

cooperative Dos Pinos. Dos Pinos collects the milk from the dairy farmers and processes it to 

various dairy products that are sold in the domestic and international markets. To meet the milk 

quality demands set by the dairy cooperatives that buy the milk, the farmers spend about 51% of 

their annual budget importing cattle feed to sustain their productivity and 15% of their annual 

budget on electricity for milking and cooling purposes. There are about 25 dairy farms in La 

Florida. The cows are free range and waste from the cows is only collected when milking and 

disposed of through land application on the cattle pastureland. Only one farm treats their waste 

through composting. In an effort to reduce electrical costs and reduce the environmental burden 
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of dairy farming, the farmers of La Florida are interested in installing tubular anaerobic digestion 

systems to treat their livestock waste. In addition interviews were conducted in Spanish at the 

field sites. A list of interview questions and answers is provided in Appendix D. 

5.2.2 Sample Collection 

In the community of San Luis de Monteverde, feces from 4 farms using tubular digesters 

were sampled from 22 pigs (8 suckling pigs, 11 growing pigs aged 1 to 6 months, 2 sows and 1 

boar). In the community of La Florida, feces from 8 farms were sampled from 326 cattle at 

various age groups (234 dairy cattle actively producing milk, 24 pregnant cows, 68 calves and 2 

bulls). These analyses were carried out in January and February 2015. Samples were analyzed 

within 24 hours of collection for the presence of Cryptosporidium sp. and Giardia sp. as 

described below. In addition, all of the farmers who participated in this study were interviewed 

to gain insight into their livestock and tubular digester management practices. Interviews were 

conducted in Spanish at the field sites. A list of interview questions is provided in Appendix B 

and C. 

5.2.3 QMRA Model Development  

5.2.3.1 Pathogen Identification  

During the field study, all pathogen identification analyses were carried out at the 

University of Georgia Costa Rica campus (San Luis, Puntarenas, Costa Rica). Before pathogen 

analyses were carried out for each sample, 15-20 g of raw feces were mixed with 20 mL of 

deionized water and passed through a 152 mm sieve to remove debris and produce sieved 

manure slurry. A commercially available rapid immune-assay, ImmunoCard STAT! from 

Meridian Bioscience Inc. (Cincinnati, Ohio) and a fecal floatation method were used to detect 

Cryptosporidium sp. and Giardia sp. (oo)cysts in the dairy and swine manures. The ImmunoCard 
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STAT! Crypto/Giardia assay detects and distinguishes between Cryptosporidium parvum and 

Giardia lamblia (oo)cysts antigens in feces using a non-enzymatic rapid immunoassay format. 

Since the ImmunoCard Stat! assay is designed for use in human fecal samples, a sensitivity 

analysis to livestock feces was performed. Three grams of cow and swine feces that had tested 

negative for the presence of (oo)cysts was spiked with 6000 non-viable (oo)cysts each and 

assessed according to manufacturer's instructions. It was noted that for livestock manure with 

spiked (oo)cysts, 20 minutes versus the 10 minutes recommended by the manufacturer was 

required to reveal a positive Cryptosporidium parvum and Giardia lamblia test result possibly 

due to higher solids content in livestock feces compared to human feces. For the fecal floatation 

method, approximately 3 g of the sieved manure slurry was thoroughly mixed with 5 mL of a 

ZnSO4 solution in a 10 mL test tube. An additional 5 mL of the ZnSO4 solution was slowly 

added to the 10 mL test tube to get a positive meniscus. A coverslip was applied to the top for 15 

minutes. The coverslip was then placed on a microscope slide and examined by light microscopy 

at 100x magnification for the presence of Cryptosporidium sp. and Giardia sp. (oo)cysts using a 

Fisher Scientific Micromaster microscope (Hanover Park, IL). Samples were analyzed in 

triplicate. The ZnSO4 solution was prepared by mixing 386 g of ZnSO4 in 1000 mL of deionized 

water. Non-viable (oo)cysts were purchased from Waterborne Inc. (New Orleans, LA).  

5.2.3.2 Dose Response 

Epidemiological studies are required to determine the capacity of Cryptosporidium 

parvum and Giardia lamblia to harm human beings. Prior epidemiological studies on healthy 

human volunteers have estimated a dose response parameter of a single agent causing infection 

(r) from exposure to Cryptosporidium parvum and Giardia lamblia as 5.72 x 10-2, 1.99 x 10-2 

and 1.5 x 10-2 respectively (Rendtorff, 1954; Messner et al., 2001).  



www.manaraa.com

97 
 

5.2.3.3 Exposure Assessment 

Mathematical equations for exposure assessment were derived from Brooks et al. (2012) 

and values for model inputs are summarized in Table 5.1. The pathways that were considered in 

this study are fomite and soil contamination and crop contamination from runoff.  

Fomite contamination model: Fomite contamination was considered when the farmers are 

handling raw manure to dispose of it in the cattle pastureland or when preparing tubular digester 

influent. Fomite contamination was calculated assuming that a fraction of raw manure was 

transferred to a fomite such as the handle of the shovel or bucket. During a single event 

exposure, with no decay, the fomite pathogen concentration was: 

Cf = Crm x Frm (Eq. 5.1) 

where Cf  is the fomite pathogen concentration ((oo)cysts/fomite); Crm is the pathogen 

concentration in the raw cattle and swine waste ((oo)cysts/g TS); and Frm is the amount of raw 

waste transferred to a fomite (g/fomite). Fomite pathogen concentration accounting for 

inactivation over time was calculated as: 

Cf = Crm x Frm x (1/10K
f) (Eq. 5.2) 

where Kf is (oo)cysts inactivation rates on a fomite (log removal/day). Fomite log removal rates 

were linearly extrapolated from day 0 to day 5. 

Soil contamination model: Soil contamination resulted from land application of tubular 

digester effluent in the soil. To calculate the pathogen concentrations in the soil, inactivation 

rates of Cryptosporidium parvum and Giardia lamblia in the soil were considered: 

Cs = Cde x Ds x (1/10K
s) x (1000 g/kg) (Eq. 5.3) 

where Cs is the soil pathogen concentration ((oo)cysts/kg soil); Cde is the concentration of 

pathogens in the digester effluent ((oo)cysts/L); Ds is the soil dilution ratio (L of digester 
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effluent/ g of soil); and Ks is the (oo)cysts inactivation rates in the soil at 25°C (log 

removal/day). Soil log inactivation rates were linearly extrapolated from day 0 to day 120. 

It should be noted that only soil contamination from the use of tubular digester effluent was 

considered. After performing a participatory observation on livestock waste disposal methods  

and interviews with dairy farmers in the La Florida community, it was concluded that there was 

negligible exposure to farmers from soil contamination as they disposed of the manure in the 

cattle pastureland and did not tend to this soil.  

Of the eight farmers using tubular digesters in San Luis de Monteverde, only one farmer 

used their digester effluent to fertilize crops eaten raw such as tomatoes and lettuce. All other 

farmers with digesters used the effluent to fertilize corn, beans, fruit trees and root crops that 

were later cooked. Therefore, direct crop contamination from use of raw livestock waste and 

tubular digester effluent was not assessed for this study.  

Crop contamination from runoff model: Only indirect crop contamination from runoff for 

low hanging foods eaten raw (lettuce, cabbage and cilantro) was considered. To determine the 

concentration of pathogens on foods eaten raw, the concentration of pathogens in the raw cattle 

waste and tubular digester effluent deposited on a field was first estimated: 

Cp = Crm x Arm x (106 g/Mg) or Cde x Ade (Eq. 5.4) 

where Cp is the concentration of (oo)cysts per hectare ((oo)cysts/ha); Arm is the application rate 

of raw cattle waste (Mg/ha); and Ade is the application rate of tubular digester effluent (L/ha). Ade 

was calculated as the tubular digester effluent flow rate divided by the area where the farmers 

apply their effluent. The concentration of (oo)cysts on crops contaminated by runoff was 

expressed as: 

Cc = Cp x Fr x Tr x Dr x (1/10Kw) x Tc x (1/10Kc) x Tw (Eq. 5.5) 
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where Cc is the concentration of (oo)cysts on crops contaminated by runoff ((oo)cysts/kg); Fr is 

the fraction of (oo)cysts available for runoff; Tr is the percentage of (oo)cysts once applied to the 

soil will be transferred to the runoff water; Dr is the (oo)cysts dilution ratio in the runoff water; 

Kw is the inactivation rate of (oo)cysts in water at 25°C (log removal/day); Tc is the percent 

attachment of (oo)cysts from the runoff water to crops; Kc is the inactivation rate of (oo)cysts on 

crops at 22°C (log removal/day); and Tw is the percentage of soil particles that remain on the 

crops after washing. There is limited research on the percent attachment of Cryptosporidium sp. 

and Giardia sp. in runoff water to crops. However, various studies have recovered (oo)cysts 

from leafy crops irrigated with wastewater (Monge and Chinchilla, 1996; Amoros et al., 2010; 

Rzeżutka et al., 2010). Tc values for this study were assumed to be the same as the recovery rates 

obtained by Monge and Chinchilla (1996) who investigated the presence of Cryptosporidium sp. 

and Giardia sp. in lettuce and cilantro leaves sold in markets in Costa Rica. Water and crop log 

inactivation rates were linearly extrapolated from day 0 to day 14. 

5.2.3.4 Risk Characterization 

Risk characterization combines the exposure assessment data with the dose response data 

to determine the risk of infection to the pathogens at the different exposure pathways. First, the 

concentration of (oo)cysts ingested (dose) is estimated: 

d = Cep x Ci or 

d =  Cep x Ci x Th x Tm 
(Eq. 5.6) 

where d is the dose ((oo)cysts/dose); Cep is the concentration of (oo)cysts at each exposure 

pathway; Ci is the amount of soil ingested during occupational activities (0.48 kg soil/day) or 

leafy crops consumed per day (0.292 kg leafy crops/day); Th is the transfer of (oo)cysts from 

fomite to hand; and Tm is the transfer of (oo)cysts from hand to mouth. Protozoan parasites 
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follow an exponential distribution dose-response model and the probability of infection during a 

one-time exposure to Cryptosporidium parvum or Giardia lamblia is expressed as: 

Pi = 1-exp (-rd) (Eq. 5.7) 

where Pi is the one-time pathogen exposure probability of infection (Haas et al., 1999). 

5.2.3.5 Data Analysis 

Oracle Crystal Ball (Redwood City, CA) was used for Monte Carlo simulation. A Monte 

Carlo uncertainty analysis was performed by running 10,000 trials with varying contamination 

model inputs to determine how model inputs affected the risk of infection. All the kinetic inputs 

were considered uncertain inputs with normal distributions. 

5.3 Results and Discussion 

5.3.1 Pathogen Concentrations 

During the three week field study, none of the feces sampled produced positive results for 

either Cryptosporidium parvum or Giardia lamblia. Although the pigs and dairy cattle were not 

shedding viable (oo)cysts at the time of this study, giardiasis and cryptosporidiosis is a public 

health concern for communities in Costa Rica (Monge et al., 1996). Cryptosporidium sp. and 

Giardia sp. shedding in pigs and adult cattle is sporadic, with younger animals shedding the 

highest concentration of (oo)cysts. Therefore, determining the risk of infection from these 

protozoan parasites is necessarily to determine the appropriate risk management strategies to 

reduce the health burdens associated with giardiasis and cryptosporidiosis. Average 

concentrations of viable Cryptosporidium sp. and Giardia sp. in raw dairy cattle and swine waste 

from the literature were used for this study and are summarized in Table 5.2. The highest viable 

(oo)cysts effluent concentrations modeled in Chapter 4 for four tubular digesters are summarized 
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in Table 5.3. Modeled viable (oo)cysts effluent concentrations varied between the three tubular 

digesters due to differences in the digesters operating parameters.  

5.3.2 Fomite Contamination 

The risk of infection from Cryptosporidium parvum and Giardia lamblia was estimated 

for occupational based exposure for an adult handling a wooden fomite for periods of 1 to 5 

days. Inactivation of (oo)cysts on a wooden fomite was used because farmers in these two 

communities used shovels with wooden handles to prepare swine waste slurry for the tubular 

digesters and when disposing of raw cattle waste. The risk of infection from occupational 

exposure to a contaminated wooden fomite is shown in Table 5.4. For this exposure scenario 0.1 

g of raw cattle or swine waste was assumed to be transferred to the wooden fomite, based on 

USEPA occupational transfer (Brooks et al., 2012). Occupational exposure to wooden fomites 

contaminated with raw cattle waste presented a greater risk compared to raw swine waste due to 

the higher concentration (3-5 orders of magnitude) of (oo)cysts in the raw cattle waste. 

Inactivation of (oo)cysts was the main factor contributing to the risk of infection from exposure 

to contaminated fomites. Inactivation of (oo)cysts on fomites is affected by surface 

characteristics (porous or nonporous) and environmental conditions such as temperature, relative 

humidity and exposure to UV radiation (Bowman, 2009). Anderson (1986) investigated the 

inactivation of Cryptosporidium sp. on a wooden surface at ambient temperature and reported a 4 

log removal in 3 days. Other studies have investigated inactivation of Cryptosporidium sp. 

oocysts on dry metal surgical blades and dry glass surfaces and reported higher inactivation rates 

compared to wooden surfaces. This difference in inactivation could be due to cracks and crevices 

on wooden surfaces that may protect the oocysts from inactivation (Barbee, 1999; Robertson, 

1992). It should be noted that the inactivation rate of Giardia lamblia on wooden fomites was 
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assumed to be similar to the inactivation rate of Cryptosporidium sp. on a wooden surface due to 

lack of literature on Giardia sp. inactivation on fomites. This assumption may have 

overestimated the risk of infection from Giardia lamblia as the inactivation of Giardia lamblia 

has been shown to be greater than Cryptosporidium sp. when the (oo)cysts are exposed to similar 

environmental conditions (Olson et al., 1999; Chapter 4). More research is required to investigate 

inactivation of Giardia lamblia on fomites. Such a study would provide more accurate data for 

communities at risk of infection from these parasites. Additionally, risk management strategies, 

such as personal hand hygiene and placing shovels in the sun for parasite inactivation through 

UV radiation, can be encouraged to lower the risk of infection from occupational exposure to 

contaminated fomites.  

5.3.3 Soil Contamination 

The risk of infection from Cryptosporidium parvum and Giardia lamblia was estimated 

for occupational based exposure for an adult tending to the soil after application of the tubular 

digester effluent for periods of 1 to 120 days.  The risk of infection from (oo)cysts from using 

tubular digester effluents as a soil amendment are summarized on Table 5.5. A Monte Carlo 

simulation was performed to determine how model inputs influenced the risk of infection. Three 

conclusions were drawn from these results. First, the risk of infection from Giardia lamblia was 

significantly different from the risk of infection from Cryptosporidium parvum for the same time 

periods. Although the soil inactivation rates between the two parasites were not significantly 

different, the tubular digester effluent (oo)cysts concentrations differed significantly (Table 5.2) 

due to the differences in operating parameters between the four digesters and (oo)cysts 

inactivation rates during digestion (Chapter 4).  
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Second, the risk of infection during occupational exposure to contaminated soil was 

higher in this study than reported risk of infection in other studies. Brooks et al. (2012) 

investigated the risk of infection to Cryptosporidium parvum from use of class B biosolids on 

soils. By day 7, the risk of infection was lower than 1 x 10-4, the acceptable risk of infection 

according to WHO, while for this study the risk of infection was 1. The difference in the risk of 

infection is mainly due to the concentration of viable (oo)cysts in the tubular digester effluent 

compared to class B biosolids. Tubular digesters used in this study had a temperature of 

approximately 21°C, resulting in lower (oo)cysts inactivation rates (Chapter 4) compared to 

anaerobic digesters producing class B biosolids operated at mesophilic (30-37°C) and 

thermophilic (50-60°C) temperatures. At 21°C, log removal rates of 0.065 and 0.023 log 

removal/day were observed for Giardia lamblia and Cryptosporidium parvum respectively 

(Chapter 4). At 36°C, 0.15 log removal/day was observed for Cryptosporidium parvum, 3 log 

removal for Giardia lamblia and 1.0 log removal/day was observed at thermophilic temperatures 

(47-55°C) (Gale, 2005; Kato et al., 2010). 

The third main point was that for both Cryptosporidium parvum and Giardia lamblia, the 

(oo)cysts inactivation rates in the soil had the greatest contribution to the risk of infection, at 

about 95% for all tubular digester effluents. All other soil contamination model inputs (Cde, Ds, r 

and Ci) each had less than 1.5% contribution. Inactivation of (oo)cysts in the soil is affected by 

environmental conditions, such as temperature and moisture content. As the temperature of the 

soil increases, the inactivation of (oo)cysts would also increase leading to a lower risk of 

infection. The (oo)cysts inactivation rates in soil were reported at 25°C (Hu et al., 1996; Olson et 

al., 1999). Moisture content of the soil also influences the (oo)cysts inactivation rates in soil. As 

moisture content increases (oo)cysts inactivation rates decrease (Barwick et al., 2003). Moisture 
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contents less than 1% result in desiccation/drying of pathogen membranes which causes 

inactivation (Cotruvo, 2004). Soil moisture content can be increased by rainfall events. The 

Monteverde region of Costa Rica, where this study was performed, has a mean annual 

temperature of 18.8°C with a mean annual precipitation of 2519 mm. This region also houses the 

Monteverde Cloud Forest where the cloud cover leads to soil moisture contents of about 70% 

during the rainy season and 20-40% during the dry season (Nadkarni and Wheelwright, 2000). 

Although soil moisture content was not incorporated in the soil contamination model, the high 

soil moisture content in Monteverde may decrease (oo)cysts inactivation rates in soil, thus 

increasing the risk of infection.  

5.3.4 Crop Contamination from Runoff 

The risk of infection from Cryptosporidium parvum and Giardia lamblia was estimated 

for consumption of crops contaminated with (oo)cysts in runoff water. The crop contamination 

from runoff model was based on leafy crops eaten raw due to dietary habits of households in La 

Florida and San Luis de Monteverde based on interviews. There is lacking literature on the 

inactivation of Giardia sp. on crops, therefore, the crop inactivation rate of Giardia lamblia was 

assumed to be similar to that of Cryptosporidium parvum. Results from the crop contamination 

from runoff model are summarized in Table 5.6. From these results, 2 main conclusions were 

noted. First, several assumptions were made for the crop contamination from runoff model. To 

determine how these assumptions on model inputs affected the risk of infection, a Monte Carlo 

simulation was performed. The (oo)cysts inactivation rates on leafy crops (> 93%) had the 

greatest contribution to the risk of infection  for both tubular digester effluents and raw cattle 

waste. (Oo)cysts inactivation rates in water  contributed to the risk of infection by less than 

3.5%. Cryptosporidium parvum oocysts survival on crops has been shown to depend on the type 
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of leaf, for example iceberg lettuce leaves versus parsley leaves, when the crops are stored at the 

same temperature (Warnes and Keevil, 2003). Oocysts survive longer in crinkly textured and 

larger leafed crops, as the contours in the leaves provide the oocysts protection from desiccation. 

In smaller leaved crops such as cilantro and parsley, the crop's shorter shelf life promotes 

desiccation as the crop dries up (Warnes and Keevil, 2003).   

Second, it was noted that a one-time runoff event resulted in risks of infection greater 

than 10-2 from both parasites originating from tubular digester effluents and raw cattle waste 

within the first 3 days. However by day 7 after a runoff event, the risk of infection had decreased 

significantly when tubular digester effluent was land applied. These results indicate that if leafy 

crops are harvested 7 days after a runoff event in San Luis de Monteverde where farmers use 

tubular digester effluent as a soil amendment, the risk of infection from Cryptosporidium parvum 

and Giardia lamblia is significantly less compared to harvesting leafy crops in La Florida where 

cattle waste remains untreated. This indicates that the use of tubular digesters does significantly 

reduce the risk of infection and illness from either giardiasis or cryptosporidiosis.  

5.3.5 Risk Simulation 

Results from this risk assessment indicate that occupation exposure (fomite and soil 

contamination) resulted in higher risks than indirect exposure (crop contamination from runoff). 

Although dairy farmers in La Florida do not tend to the soil after applying raw cattle waste, a 

worst-case scenario risk of infection from exposure to soil contaminated with raw cattle waste 

(data not shown) was estimated. The risk of infection to both (oo)cysts was significantly higher 

due to higher concentrations of (oo)cysts in cattle waste compared to swine waste. While the 

cattle waste analyzed in this study was negative for the presence of Cryptosporidium sp. and 

Giardia sp., cows are the main reservoir for these parasites (Dufour et al., 2012). This study is a 
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good starting point to understand and predict the risk of infection of Cryptosporidium parvum, 

Giardia lamblia and other pathogens of concern especially for communities in the developing 

world and how tubular digesters can assist in reducing direct and indirect risks of infection. The 

exposure pathways and risks estimated in this study did not account for variability such as soil 

moisture content, wildlife contribution to (oo)cysts loads, continuous rainfall events and other 

environmental inactivation mechanisms such as UV radiation on soil. In addition, several 

assumptions were made to estimate the risk of infection due to lacking literature indicating more 

research is needed on these two parasites to provide accurate predictions especially for 

communities in the developing world. 

5.4 Conclusions 

This study investigated the risk of infection from Cryptosporidium parvum and Giardia 

lamblia from exposure to raw livestock waste and modeled (oo)cysts effluent concentrations at 

different exposure pathways. The higher concentrations of (oo)cysts in the cattle waste compared 

to the swine waste lead to the risk of infection during occupational exposure to contaminated 

wooden fomites to be greater when handling raw cattle waste. The risk of infection from 

Cryptosporidium parvum during occupational exposure to contaminated soil from tubular 

digester effluents was higher than from exposure to Giardia lamblia due to higher inactivation of 

Giardia lamblia during anaerobic digestion. The risk of infection from Cryptosporidium parvum 

and Giardia lamblia from consumption of leafy crops contaminated with runoff water in San 

Luis de Monteverde where tubular digesters was significantly lower than the risk of infection in 

La Florida where cattle waste was untreated.   



www.manaraa.com

107 
 

Table 5.1: Exposure assessment model inputs. 

Parameter Unit Cryptosporidium 

sp. 

Giardia  

sp. 

References 

Arm MgTS/ha 6.57 Gale et al., 2005  

Dr   0.045 Brooks et al., 2012 
Ds  0.00175 Gale et al., 2005 
Fr  0.1 Brooks et al., 2012 
Frm  0.1 Gale et al., 2005 
Kc log10/day 1.33 Warnes and Keevil, 2003 

Kf log10/day 1.33 Anderson, 1986 
Ks log10/day 0.052 ± 0.0045 0.057± 0.024 Hu et al., 1996; Olson et al., 

1999; Hutchison et al., 2002 
Kw log10/day 0.048 0.127 Olson et al., 1999 
Tc % 0.043 ± 0.032 Monge and Chinchilla, 1996 
Th % 0.43 Brooks et al., 2012 
Tm % 0.36 Brooks et al., 2012 
Tr

* % 9.00 ± 2.85 Trask et al., 2004 
Tw % 0.1 Gale et al., 2005 
* The Monteverde region receives approximately 160 mm rainfall/hour. Tr was calculated 
assuming a 2.2-5.2% transfer per 63.5 mm of rainfall/hour. 

 

Table 5.2: Average Cryptosporidium sp. and Giardia sp. concentrations from literature in the 
raw cattle and swine manure. 

Pathogen Cryptosporidium sp. Giardia sp. 

 oocysts/ g TS cysts/ g TS 

Raw dairy cattle manure (Crm)a 3.89 x 1010 ± 1.94 x 1010 3.80 x 107 ± 1.90 x 107 
Raw swine manure (Crm)b 9.00 x 104 ± 4.15 x 104 5.40 x 104 ± 2.66 x 104 

 aNydam et al., 2001; Hutchison et al., 2004;  Maddox-Hyttel et al., 2006; bYui et al., 2014 

 

Table 5.3: Modeled highest concentration of viable Cryptosporidium parvum and Giardia 

lamblia in four tubular digester effluents (Chapter 4). 

Digester Giardia lamblia Cryptosporidium parvum 

 
cysts/L oocysts/L 

Digester 1 1.77E+04 1.47E+05 

Digester 3 4.06E+03 3.97E+04 

Digester 4 1.20E+04 1.21E+05 
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Table 5.4: Risk of infection from Cryptosporidium parvum and Giardia lamblia during 
occupational exposure to contaminated wooden fomites. Day represents number of days after 
contamination of fomite. 

Giardia lamblia 

Day 1 2 3 5 

Raw swine waste 5.38E-01 3.53E-02 1.67E-03 3.60E-06 

Raw cattle waste 1.00E+00 1.00E+00 6.91E-01 2.53E-03 

Cryptosporidium parvum 

Day 1 2 3 5 

Raw swine waste 9.75E-01 1.58E-01 7.96E-03 1.72E-05 

Raw cattle waste 1.00E+00 1.00E+00 1.00E+00 9.99E-01 

 
Table 5.5: Risk of infection from Cryptosporidium parvum and Giardia lamblia during 
occupational exposure to contaminated soil from tubular digester effluents. Day represents 
number of days after application of digester effluent on soil. 
Giardia lamblia 

Day 1 7 14 21 28 60 90 120 

Digester 1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.99E-01 1.06E-01 2.19E-03 4.28E-05 

Digester 3 1.00E+00 1.00E+00 1.00E+00 9.87E-01 8.21E-01 2.55E-02 5.03E-04 9.8E-06 

Digester 4 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.94E-01 7.33E-02 1.48E-03 2.89E-05 

Cryptosporidium parvum  

Day 1 7 14 21 28 60 90 120 

Digester 1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.84E-01 8.64E-02 2.48E-03 6.85E-05 

Digester 3 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 7.65E-01 3.91E-02 1.10E-03 

Digester 4 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.88E-01 1.14E-01 3.34E-03 

 
Table 5.6: Risk of infection from Cryptosporidium parvum and Giardia lamblia from 
consumption of leafy crops contaminated with runoff water. Day represents number of days after 
rainfall event.  

Giardia lamblia 

Day 1 3 7 11 14 

Digester 1 1.00E+00 8.50E-02 1.32E-07 1.96E-13 0.00E+00 

Digester 3 1.00E+00 6.15E-02 9.44E-08 1.40E-13 0.00E+00 

Digester 4 1.00E+00 4.25E-01 8.22E-07 1.22E-12 0.00E+00 

Raw cattle waste 1.00E+00 1.00E+00 7.61E-01 2.13E-06 9.05E-11 

Cryptosporidium parvum 

Day 1 3 7 11 14 

Digester 1 1.00E+00 3.18E-02 9.94E-08 3.06E-13 0.00E+00 

Digester 3 1.00E+00 8.97E-02 2.89E-07 8.89E-13 0.00E+00 

Digester 4 1.00E+00 6.09E-01 2.89E-06 8.89E-12 0.00E+00 

Raw cattle waste 1.00E+00 1.00E+00 1.00E+00 4.52E-02 3.40E-06 
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Chapter 6: 

 

Conclusions 

Tubular anaerobic digesters are being promoted in developing countries to treat livestock 

waste while generating biogas and recovering nutrients for use as fertilizers.  For a tubular 

digester to meet a household's or communities' cooking energy needs, the substrate 

characteristics and operating parameters have to be understood for proper system design. Good 

performance of the tubular digester can then lead to a number of energy, environmental, public 

health, social and agricultural benefits. Unfortunately, the use of tubular digester effluents as a 

soil amendment may result in transmission of zoonotic pathogens if they are not sufficiently 

inactivated during digestion. This dissertation sought to understand (1) the environmental 

conditions and physical and biological processes occurring in tubular digesters treating livestock 

waste; (2) how the environmental conditions and the physical and biological processes in the 

tubular digesters affect the fate and viability of Cryptosporidium parvum  oocysts and Giardia 

lamblia cysts; and (3) whether the use of tubular digesters to treat livestock waste lowers the risk 

of infection from Cryptosporidium parvum and Giardia lamblia (oo)cysts. This dissertation 

contains guidelines for designing and operating tubular digesters that can be used by engineers, 

development workers, public health workers and policy makers seeking to improve the quality of 

life for citizens in developing countries.  

Field studies were carried out at small-scale farms in the Monteverde region of Costa 

Rica that used tubular digesters to treat swine waste and produce biogas. Significantly high 

removal efficiencies of BOD5, VS, and E. coli and adequate biogas production rates were 
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observed in the tubular digesters. This was attributed to the formation of a biologically active 

floccular sludge layer, which resulted in separation of hydraulic residence time (HRT) and mean 

cell residence time (MCRT). Computational fluid dynamic (CFD) and bioprocess models were 

developed for one of the tubular digesters to evaluate the transport and transformation 

mechanisms in the digester. A reduced order model was validated through CFD modeling and 

field tracer study data to estimate a mean liquid HRT of 23 days.  The reduced order model also 

validated the assumptions that the liquid phase of the tubular digester functioned as a CSTR, 

with turbulence as the main transport mechanism. The bioprocess model was based on a 

simplified floccular sludge layer reactor model and was used to estimate an average MCRT of 

115 days.  A mean liquid HRT of 23 days combined with a MCRT of more than 100 days 

indicated a robust syntrophic relationship between the physical and biological processes. This 

good relationship led to low effluent organic matter concentrations and sufficient biogas 

production to meet households’ energy demands. 

Environmental conditions of four tubular digesters were investigated. Ambient 

temperatures (21-24°C), neutral pH and total ammonia nitrogen (TAN) concentrations below 250 

mg NH4
+-N/L were observed in the tubular digesters. Laboratory (oo)cysts inactivation studies 

were performed under similar conditions. Inactivation rate constants for Cryptosporidium 

parvum and Giardia lamblia (oo)cysts were 0.056 and 0.726 day-1, respectively. These values 

were similar to inactivation rates observed in a reactor with PBS solution and similar TAN and 

VFA concentrations but were significantly higher than in a control reactor with only PBS 

solution. Due to the substantial settling and accumulation of solids that was occurring in the 

tubular digesters, it was important to determine the fraction of (oo)cysts that adhered to the 

digester biosolids or remained suspended in the liquid. An (oo)cysts solid-liquid phase 
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distribution study indicated that 60% of both (oo)cysts adhered to biosolids. A simplified tubular 

digester model was used to estimate the concentration of viable (oo)cysts in the digester 

effluents. (Oo)cysts adhesion to solids, total solids concentration in the digester and HRT were 

the main factors contributing to the modeled effluent concentration of viable (oo)cysts. 

A QMRA model was developed to investigate the risk of infection from exposure to raw 

livestock waste and tubular digester effluent. This model was developed for two rural 

communities in Costa Rica. One community used tubular digesters to treat their swine waste 

while the other community was comprised of dairy farmers who did not treat their cattle waste. 

The risk of infection from Cryptosporidium parvum and Giardia lamblia was assessed for direct 

and indirect exposure pathways, fomite and soil contamination and crop contamination from 

runoff. There were three main contributing factors to the risk of infection from both parasites at 

the different exposure pathways. The first was the differences in the concentration of (oo)cysts in 

the raw cattle and swine waste. At the three exposure pathways, the risks related to cattle waste 

were greater than swine waste due to the higher concentration of (oo)cysts in the raw cattle waste 

compared to swine waste. Animal-specific risk management guidelines should be developed to 

reduce exposure to wastes from animals with high pathogen shedding rates. Second, the 

inactivation rates at the various exposure pathways were the main contributing factor to the risk 

of infection. The risk of infection at all exposure pathways decreased with increasing inactivation 

rates. In addition, Cryptosporidium parvum posed a greater risk than Giardia lamblia in all 

exposure pathways due to livestock shedding high loads of Cryptosporidium parvum oocysts and 

oocysts’ lower inactivation rates during anaerobic digestion compared to Giardia lamblia cysts. 

Lastly, it was noted that in the community using tubular digesters to treat livestock waste, the 

risk of infection from exposure to contaminated soil and crops was significantly lower compared 
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to the community where livestock waste was applied to soil untreated. This indicates that 

treatment of livestock manure in small-scale tubular digesters has the potential to significantly 

decrease the risk of infection below the World Health Organization’s acceptable individual 

annual risk of infection (10-4). 

This dissertation provides information on how the use of tubular digesters to treat 

livestock waste can lower the risk of infection from pathogens. The physical, biological and 

QMRA models developed for this research were simplified to model the dynamic and complex 

mechanisms in tubular digesters. This encourages their use by engineers, development workers 

and public health workers to predict biogas production, (oo)cysts inactivation, (oo)cysts 

concentrations in tubular digester effluents, and the risk of infection from Cryptosporidium 

parvum and Giardia lamblia. However, additional research is recommended to verify 

inactivation of (oo)cysts at different exposure pathways and to validate the biological model used 

to estimate the MCRT. This research will also aid communities in developing countries that are 

greatly affected by lack of education, lack of resources, lack of clean water and waste 

management systems. Impoverished communities need to be empowered (especially women and 

girls) by providing them with a well designed technology that provides energy, environmental, 

social, economic, public health and agricultural benefits. As a result of this type of research and 

technology, women and girls are enabled to pursue other necessities such as farming, 

entrepreneurship, or an education. The benefit of empowering a woman is she empowers her 

household which trickles “up” to empowered nations.  
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Appendix A Bioavailability of Organic Carbon in Anaerobically Digested Swine Waste5 

 

A.1 Introduction 

Increasing demand for meat worldwide has led to the construction of large concentrated 

animal feeding operations (CAFOs) for livestock. Pigs make up 40% of the world’s meat 

demand, and swine waste presents a number of problems for CAFOs (Choi, 2007). Untreated 

swine waste contains organic matter, nutrients such as nitrogen and phosphorus, suspended 

solids, pathogens, odorous volatile compounds, trace elements, and other chemicals of concern 

(Bernet and Beline, 2009; Choi, 2007). Land application is a common method for disposing of 

CAFO waste in the United States (US) and European Union (EU) (Bernet and Beline, 2009); 

however, waste produced in CAFOs often exceeds the amount that can be used directly on the 

land without causing a strain to the environment. Anaerobic lagoons are also commonly used for 

swine waste treatment. Although these systems are inexpensive, they have high land 

requirements and contribute to greenhouse gases (GHG) emissions and eutrophication of 

receiving waters (Moser, 1998). 

In an effort to reduce GHG emissions and improve waste management, the USEPA 

requires that CAFOs limit land application of waste and the use of uncovered and unlined 

anaerobic lagoons (USEPA, 2008). Therefore, farmers are seeking alternative waste treatment 

technologies such as anaerobic digestion. One major advantage of using anaerobic digestion is 

that the biogas produced is captured and can either be utilized to produce green renewable 

energy for use on farms to heat water or buildings, or to generate electricity, which can be used 

on site or sold to power companies (Westerman, 2008). Although anaerobic digestion is a 

potential solution to land application and anaerobic lagoons, centrate from anaerobic digestion is 

                                                           
5 Reprinted from Bioresource Technology, 162, Maureen N. Kinyua, Jeffrey Cunningham, Sarina J. Ergas, "Effect 
of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste", 14-20, 
Copyright (2014), with permission from Elsevier (see Appendix F for copyright letter). 
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rich in organic nitrogen and ammonia that can cause eutrophication in receiving waters. 

Therefore, further treatment for nitrogen removal is becoming increasingly common. 

Biological nitrogen removal (BNR) systems, similar to those that have been applied to 

treatment of municipal wastewater, can be used to remove nitrogen from the centrate produced 

by anaerobic digestion of livestock wastes (Park et al., 2007; Bortone et al., 2009; Rajagopal et 

al., 2011).  During the denitrification step of BNR processes, organic carbon is needed as an 

electron donor and carbon source for denitrifying bacteria. Centrate from anaerobically digested 

swine waste contains organic carbon that has the potential to serve as an internal organic carbon 

source for denitrification.  Indeed, several prior studies have been conducted on the use of 

centrate from anaerobically digested swine waste as a carbon source for denitrification (Font et 

al., 1997; Boursier et al., 2005; Obaja et al., 2005; Park et al., 2009; Rajagopal et al., 2011). 

The issue with using the organic carbon in anaerobic digester centrate as an internal 

organic carbon source for denitrification is that much of this organic carbon is not readily 

biodegradable, and hence limits the rate and extent of denitrification.  Boursier et al. (2005) and 

Obaja et al. (2005) found that centrate from anaerobic digestion of swine waste did not 

adequately support denitrification because the centrate did not supply sufficient readily 

biodegradable organic carbon.  However, Obaja et al. (2005) and Park et al. (2009) were able to 

achieve better than 90% removal of nitrogen by supplying additional volatile fatty acids (VFAs) 

as a source of readily biodegradable organic carbon.  The adequacy of the supply of readily 

biodegradable organic carbon can be quantified by the ratio of biodegradable COD to the 

concentration of nitrate (as nitrogen).  Boursier et al. (2005) suggested that denitrification 

requires a ratio of at least 5.0 g COD / g N, which is higher than the COD/N ratio of 2.86 that 

can be calculated based on stoichiometry relationships.  
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The bioavailability of organic carbon in the centrate for denitrification depends on the 

operational parameters used in the anaerobic digestion system.  Specifically, solids retention time 

(SRT) is one of the main parameters that affect the biodegradable COD to N ratio.  Kuo et al. 

(1996) found that with increasing SRT, more readily biodegradable COD was produced in the 

form of VFAs.  Similarly, De Lucas et al. (2000) found that increasing SRT in an anaerobic 

digester treating synthetic wastewater increased the readily biodegradable COD fraction in the 

centrate by 37.5%.  The authors attributed this to the microorganisms having more time to 

hydrolyze slowly biodegradable COD to readily biodegradable COD.  Boursier et al. (2005) 

suggested that operating an anaerobic digester at an SRT of 40–60 days would provide a suitable 

ratio of biodegradable COD to N.  Thus, based on previous literature, it can by hypothesized that 

increasing SRT in the digester leads to an increase in the ratio of biodegradable COD to N, and 

thereby improves the centrate’s ability to serve as a substrate for denitrification. 

However, lengthening the SRT will affect other aspects of a digester’s performance.  The 

SRT that is best for providing readily biodegradable COD might not be best for removing solids 

or producing methane (CH4), for example.  To the best of our knowledge, there has been no 

previous study that has examined the simultaneous effects of SRT on both digester performance 

and production of readily biodegradable COD.   

Therefore, the objective of this paper is to quantify the effects of SRT on biogas 

production, CH4 yield, removal of VS, concentration of readily biodegradable COD, and 

subsequent rates of denitrification during the anaerobic digestion of swine manure.  The rationale 

is that quantifying these simultaneous effects may enable us to identify a favorable SRT at which 

centrate can be used as a substrate for denitrification, while still providing desired removal of VS 

and production of valuable CH4. 
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A.2 Methods and Materials 

A.2.1 Anaerobic Digesters 

Bench-scale anaerobic digesters were initially inoculated with seed sludge from an 

anaerobic digester treating food waste in the laboratory of Dr. Ann Wilkie in the Department of 

Soil and Water Science at the University of Florida in Gainesville, FL. Digester influent was 

prepared by blending swine waste with groundwater to achieve a target VS concentration of 51 

g/L. Swine waste was collected weekly from Twenty Four Rivers Farm in Plant City, FL. 

Groundwater used for this study contained micronutrients such as calcium, magnesium and iron 

that are beneficial for anaerobic microorganisms’ growth (Gerardi, 2003). During start-up, 

varying influent VS concentrations were tested to determine efficient biogas production without 

total ammonia nitrogen (TAN) inhibition. It was found that 51 g VS/L produced stable digester 

performance and this value is also in the range used by other authors (Choi, 2007). 

Characteristics of the influent swine waste are shown in Table A.1.  

Bench-scale anaerobic digesters were constructed using 2-L glass bottles equipped with 

rubber stoppers and tubing for gas release. A working volume of 1.5L was maintained in each 

reactor. The digesters were operated at 14, 21, 28 and 42 day SRTs, resulting in organic loading 

rates (OLR) of 3.6, 2.4, 1.8 and 1.2 (kg VS)/(m3.d), respectively. Digesters were managed in 

semi-continuous mode (fed three times per week), continuously mixed and incubated at 35 °C 

using a Gyromax 727 orbital shaker incubator (Lafayette, CA). Reactor pH was maintained 

between 7.0-7.4 by addition of 3.0 N NaOH as needed. Influent and effluent samples were 

collected weekly and measurements of total nitrogen (TN), total phosphorus (TP), COD, VFA, 

alkalinity, TAN, VS, and total solids (TS) were performed as described below. Results shown in 
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Table A.1 and A.2 represent averages of weekly sample analysis during the 12 weeks of 

operation.  

A.2.2 Respirometry 

The respirometric assessment of readily biodegradable COD concentrations in the 

anaerobically digested centrate was performed using a pulse flow (PF-8000) respirometer system 

from Respirometer Systems and Applications (RSA) LLC (Springdale, AK). The oxygen uptake 

rate (OUR) test procedure, which measures the oxygen used by microorganisms for respiration is 

described in detail in Kinyua (2013). Briefly, the laboratory set-up consisted of 0.15 L test 

vessels operated in batch mode. Each test vessel was seeded with mixed liquor volatile 

suspended solids (MLVSS) from the Hillsborough County Northwest Regional Water 

Reclamation Facility (NWRWRF) in Odessa, FL to achieve a TS concentration of 3.0±0.5 g/L. 

NWRWRF  employs a 5-stage Bardenpho process for single sludge BNR. Each test vessel also 

received centrate from the bench scale anaerobic digesters to reach a food-to-microorganisms 

(F/M) ratio of 0.67 mg centrate COD/mg biomass VSS. The respirometer was used to measure 

the oxygen uptake rate (OUR) over time in units of (mg O2)/(L.hr) in each test vessel for at least 

14 hours. Based on the shape of the curves, the measured OUR over the first 4 hours of the test 

was then integrated to calculate the concentration of oxygen consumed during that 4-hour period.  

This calculated concentration was used as one estimate of readily biodegradable COD in the 

centrate. 

A.2.3 Denitrification Kinetics 

The effect of anaerobic digester SRT on the rate of denitrification was investigated using 

a microcosm study. Microcosms were set up in duplicate in 100 mL glass serum bottles. Centrate 

from the bench scale anaerobic digesters and MLVSS from the NWRWRF were added to the 
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microcosms to achieve a F/M ratio of 1.0 mg centrate COD/mg biomass VSS.  Microcosms were 

initially purged with nitrogen gas for 10 minutes, and then spiked with a stock NO3
– solution to 

achieve a NO3
–-N concentration of 1 g/L. Nitrification inhibitor (Formula 2533, Hach company, 

Loveland, CO ), was added to the microcosms at a concentration of 0.05 mg/L to prevent 

interference from nitrification. Microcosms were incubated at room temperature (20 °C) on a 

VWR OS-500 shaker table for 8 hours. Samples were collected hourly and analyzed for NO3
–-N 

concentrations as described below.  

A.2.4 Analytical Methods 

Centrate was obtained by centrifuging effluent samples from the bench-scale digesters for 

10 minutes at 3500 rpm using a Thermo scientific CL2 centrifuge (West Palm Beach, FL). 

Standard Methods (APHA, 2012) were used to measure TN (4500- NO3
– E and 4500-P E), TP 

(4500-P J), COD (5200 B), alkalinity (2320 B), NO3
–-N (4500- NO3

–-B), VS, and TS (2540 G). 

The TAN and VFA testing methods were adapted from literature as described by Kinyua (2013). 

The TAN testing method was adapted from Willis et al. (1996), with modification of color 

reagent storage time. VFA concentrations were measured using the method described by 

Montgomery et al. (1962), with modification of spectophotometer wavelength to 500nm. Method 

detection limits (MDL) were (mg/L): 0.7 for TN, 0.04 for TP, 30 for COD, 0.7 for TAN and 14 

for VFA.  

Biogas volume was measured using wet tip gas meters (Wayne, PA). CH4 content of the 

biogas was measured using a Gow Mac Instrument Co. gas chromatograph (GC) (Bethlehem, 

PA) equipped an 8’ x 1/8” stainless steel Molesieve column and a thermal conductivity detector.  

Helium was used as the carrier gas at a flow rate of 30mL/min.  Injector temperature during 

analysis was set at 120° C, while the detector and column temperatures were both set at 80° C. 
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The current was maintained at 80mA. The GC was calibrated using mixtures of CH4 and CO2 

with known composition.  

A.2.5 Data Analysis 

The steady state anaerobic digestion model 1 (ADM1) described by Sötemann et al. 

(2005) was used to estimate the rate of hydrolysis of the swine waste solids in anaerobic 

digestion. The ADM1 model, which is based on Monod kinetics simplifies the dynamic and 

complex relationships of microorganisms during anaerobic digestion by using hydrolysis as the 

rate-limiting step. This allowed for better understanding of the effect of SRT on hydrolysis rates 

in the digesters. Statistical analysis was performed using one-way analysis of variance 

(ANOVA) test using GraphPad Prism version 6.0 for Windows 7 (GraphPad Software, San 

Diego California USA, www.graphpad.com). p values less than 0.05 were considered 

statistically significant and values less than 0.0001 were considered extremely significant.  

A.3 Results and Discussion 

A.3.1  Overall Anaerobic Digesters Performance  

Average performance over the 12-week study period for the four reactors operating at 

different SRTs and OLRs is shown in Table A.2. The % VS removal, CH4 yield, CH4 content, 

and CH4 production of the digesters are compared in Figure A.1. Overall hydrolysis rates, which 

were calculated using ADM1, are compared in Figure A.2. From these results, three main 

conclusions can be drawn. First, the performance of all four digesters was very good compared 

to prior results in the published literature for anaerobic digestion of swine manure. Kaparaju and 

Rintala (2005), and Ndegwa et al. (2005) observed soluble COD removal in the range of 49-73% 

while this study achieved approximately 71- 75% removal in all digesters (Table A.1 and A. 2). 
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VS removal for this study was about 51-60% for all digesters (Table A.1 and A.2), while 

other authors only reported 33-52% removal (Kaparaju and Rintala, 2005; Sanchez et al., 1995). 

The good performance observed may have been due to an absence of free ammonia (FA) 

inhibition in the digesters. TAN concentrations were below the typical range (1.24-1.70 g NH4
+-

N/L) for anaerobic digestion of swine waste (Choi, 2007; Nuchdang and Phalakornkule, 2012) 

and below 1.7 g NH4
+-N/L, which has been observed to be an inhibitory concentration for 

anaerobic digestion (Gerardi, 2003). The relatively low TAN concentration in the influent (Table 

A.1) may have been due to swine farm management practices. Since only the feces portion of the 

swine waste was collected, it is likely that some of the urine, which contains most of the TN in 

swine waste, drained into the soil in the pig barns. At 35°C and the average pH values of the 

digesters (Table A.1), calculated FA concentrations for all four digesters were 3.3, 4.2, 12.3 and 

11.0 mg N/L for the 14-, 21-, 28- and 42- day SRT digesters respectively. These values were 

lower than those reported to be inhibitory in prior literature (Angelidaki and Ahring 1993; 

Hansen et al., 1998).  

Moreover, even though the VFA concentrations for the 14-, 21- and 42-day digesters 

were higher than values (0.1-0.4 g COD/L) previously reported to be inhibitory to 

methanogenesis (Ndegwa et al., 2005),  biogas production and CH4 yield were consistently high 

in the digesters. It appears that there was enough alkalinity to provide buffering capacity, and the 

pH did not decrease significantly despite the production of VFAs. pH and alkalinity values 

during the 12 weeks of operation were within the range favorable to methanogens (Gerardi, 

2003). The VFA-to-alkalinity ratios for the 14-, 21-, 28- and 42- day SRT digesters were 0.3, 

0.2, 0.1 and 0.2, respectively. The recommended VFA-to-alkalinity ratio is 0.1-0.2, with a ratio 
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greater than 0.5 causing complete system failures (Gerardi, 2003). All but the 14-day SRT 

digester were within this recommended VFA-to-alkalinity ratio.  

The second main conclusion is that, the digester operated at a 21-day SRT had the best 

overall performance. For some performance metrics, such as % VS removal, total COD removal, 

and soluble COD removal, the differences between the reactors were not meaningful at a 

statistically significant level. However, CH4 yields between the four digesters were significantly 

different (p =0.0003) based on the highest and lowest yields, with the digester operated at a 21-

day SRT having the highest average CH4 yield (Figure A.1). The 21-day SRT digester also had 

the highest % CH4 content in the biogas and CH4 production (Figure A.1).  

Third, the SRT of the digesters affected CH4 yield. The digester with the lowest SRT had 

the lowest CH4 yield despite having a high rate of hydrolysis (Figure A.2) and a VS removal 

similar to that of the other digesters. This indicates that microorganisms in the 14-day SRT 

digester had time to metabolize the solid substrates into organic acids but did not have adequate 

time to convert the organic acids into CH4. High variability in CH4 yield and production was also 

observed in the 14-day SRT digester, as shown by the error bars in Figure A.1. This may have 

been due to having an SRT too close to the minimum SRT required to prevent washout of slow 

growing methanogens and/or its high VFA-to-alkalinity ratio. In addition, the digester with the 

longest SRT had the lowest CH4 production rate, most likely due to the low OLR and slower 

hydrolysis rate compared to the other digesters (Figure A.2) however, this was not statistically 

significant.    

A.3.2 Bioavailability of COD in Centrate 

A key objective of this paper is to quantify the effect of digester SRT on the ability of the 

digester centrate to serve as an internal organic carbon source for denitrification.  To make this 
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assessment, three types of analyses were performed: respirometric measurements of readily 

biodegradable COD (which can serve as a suitable substrate for denitrification) in the centrate, 

microcosm denitrification tests using centrate as an electron donor, and measurement of the 

concentrations of volatile fatty acids (VFAs) in the centrate.  

A.3.2.1 Respirometric Measurement of Readily Biodegradable COD 

An example of an OUR curve produced during the respirometry test is shown in Figure 

A.3.  A period of 4 hours was chosen to calculate the readily biodegradable COD because the 

first 1-4 hours have been found to be the time during which aerobic microorganisms have 

sufficient substrate for growth (Ekama et al., 1986).  The average readily biodegradable COD 

concentrations for the 4 reactors were 1.9, 1.7, 1.8 and 1.9 g COD/L for the 14-day, 21-day, 28-

day, and 42-day SRT digesters, respectively. 

A.3.2.2  Denitrification Microcosm  

Results of the microcosm tests are shown in Figure A.4.  Nitrate removal appears to have 

occurred in three phases, which is a trend previously observed when a complex organic carbon 

source is used for denitrification (Henze et al., 1999; Sage et al., 2006).  In the first phase of 

denitrification, readily biodegradable COD in the centrate is utilized, followed by slowly 

biodegradable COD in the second phase.  In the third phase, endogenous organic carbon is 

utilized (Henze et al., 1999; Sage et al., 2006; Fernández-Nava et al., 2010).  The highest 

denitrification rate was observed during the first 3–4 hours, as shown in Figure A.4, suggesting 

that readily biodegradable COD is consumed in about 3–4 hours.  This supports the choice made 

in the analysis of OUR tests (Section A.2.1, above) to integrate the OUR over the first four 

hours.   
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Phase 1denitrification rates using centrate from the four digesters were significantly 

different (p <0.0001), and occurred at rates in the range of 47–56 (mg NO3
–-N)/(g VSS�hr) 

(Table A.3 and Figure A.4).  The centrate from the 21-day-SRT digester had the highest 

denitrification rate.  Maximum denitrification rates in this study were higher than those 

previously reported using centrate from anaerobic digestion; Bickers and van Oostrom, (2000) 

achieved 2.8–10.5( mg NO3
–-N)/(g VSS�hr), Obaja et al. (2005) reported 31.1–40.1 (mg NO3

–-

N)/(g VSS�hr) and  Fernández-Nava et al. (2010) had 41.6–46.8 (mg NO3
–-N)/(g VSS�hr). 

A.3.2.3  Concentration of Volatile Fatty Acids 

As shown in Table A.2, the average concentrations of VFAs in the centrate of the four 

digesters were 1.4, 1.1, 0.8, and 1.0 g COD/L.  Concentrations of VFAs were measured as g 

acetate/L; however, concentrations are reported as g COD/L based on the theoretical oxygen 

demand of acetate for comparison to results above.  For all four digesters, the concentration of 

VFAs was lower than the estimated concentrations of readily biodegradable COD reported 

above; the differences were statistically significant at a 95% confidence level.  The wet 

chemistry method used to analyze the VFAs in the effluent is based on measuring the short-chain 

fatty acids such as acetate and propionate.  However, the centrate may have also contained 

branched-chain fatty acids, such as iso-butyric and iso-valeric acids, which are produced during 

the anaerobic digestion of swine waste.  These branched-chain fatty acids may have contributed 

to the readily biodegradable COD concentration, but were not detected by the analytical method 

used in this study (Wang et al., 1999). 

A.3.3 COD Fractionation  

The fractionation of COD in the four digesters is shown graphically in Figure A.5. 

Approximately 50-80% of the readily biodegradable COD was in the form of short-chain VFAs. 
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Approximating that denitrification requires 2.86 g of COD per g of NO3
–-N, it was possible to 

compute the concentrations of readily biodegradable COD in the centrate based on the 

concentration of NO3
–-N consumed during the first four hours of the tests (Figure A.4).  The 

calculated readily biodegradable COD concentrations were 1.7, 1.8, 1.7 and 1.7 g COD/L for the 

14-, 21-, 28- and 42-day-SRT digesters, respectively.  These estimates agree well with the 

estimates made using respirometry, as shown in Figure A.5.  The good agreement lends 

confidence that either method is suitable for estimating concentrations of readily biodegradable 

COD.  

In addition to readily biodegradable COD, soluble COD consists of slowly biodegradable 

COD and soluble microbial products (SMP). Concentrations of SMP have been shown to 

increase with increasing SRT, as microorganisms have more time to convert the inert portion of 

COD to soluble products (Kuo et al., 1996). There are contradicting views on the 

biodegradability of SMP. Kuo et al. (1996) defined SMP as partially biodegradable, while Duran 

and Speece (1999) defined SMP as effluent organics that cannot be biologically transformed. For 

this study, SMPs were considered as part of the total slowly biodegradable COD, they neither 

need to go through hydrolysis to become readily biodegradable, nor are they easily utilized by 

microorganisms. By subtracting the average of the readily biodegradable COD from the 

respirometer and the microcosm study from the total soluble COD, total slowly biodegradable 

COD concentrations were estimated as 1.3, 0.8, 0.9 and 1.0 g COD/L for the 14, 21, 28 and 42 

day digester, respectively. The results are consistent with the results of Boursier et al. (2005), 

who also found that anaerobically digested swine waste had a large fraction of slowly 

biodegradable COD. 
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A.3.4 Effect of SRT on Readily Biodegradable COD and Denitrification 

Estimates of the concentration of readily biodegradable COD were similar for all four 

digesters.  Based on respirometry, the concentration of readily biodegradable COD was 

estimated to range from 1.7–1.9 g COD/L.  Based on microcosm tests, the concentration was 

estimated to range from 1.7–1.8 g COD/L. For this study, two phenomena were initially 

expected; first, at low SRT a higher readily biodegradable COD was expected due to a higher 

hydrolysis rate (Figure A.2); which favors the production of VFAs without providing sufficient 

time for methanogenesis. Second, a high SRT would allow more time for hydrolysis of VS, i.e., 

for the conversion of complex VS into a readily biodegradable form.  However, surprisingly, the 

data did not support these assumptions.  Concentrations of readily biodegradable COD, VFAs 

and soluble COD were similar for all four digesters, as can be seen in Figure A.5.  

Previous researchers have suggested that a suitable denitrification potential, which is the 

ratio of biodegradable COD to N is 5 g COD/N. In this study, the denitrification potential for 

centrate from each digester was calculated by dividing the average readily biodegradable COD 

concentrations from the microcosm and respirometry tests by the average TAN concentration 

from each digester (Table A.3).  TAN concentrations were used assuming that all the TAN 

would be converted to NO3
- during the BNR process.  Contrary to other authors (Boursier et al., 

2005) even a biodegradable COD/N ratio (denitrification potential) below 5 gCOD/gN in 

reactors operated with a 28- and 42-day SRT did not affect denitrification rates. These results 

further proved that the centrate from these digesters could be apposite for denitrification and the 

biodegradable COD was sufficient for microorganisms’ biosynthesis and endogenous respiration. 

These results also disproved our earlier hypothesis that increasing SRT in the digesters would 

improve the centrate’s ability to serve as a substrate for denitrification. 
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Although using centrate from the 21-day-SRT digester produced the highest 

denitrification rate, the greatest overall NO3
– removal efficiency after eight hours (>90%) was 

observed when centrate from the digester operated at a 42-day SRT was used in the microcosm 

studies (Table A.3).  Denitrifying microcosm results with centrates from digesters operated at 14, 

21, and 28 days indicate that supplemental carbon would be required to meet the target TN 

removal efficiency of 90% suggested for BNR of swine waste (Obaja et al., 2005).  Therefore 

operation at an SRT of 42-days may be an attractive option if compliance with TN limits without 

supplemental carbon addition is a priority. 

A.4 Conclusions 

Excellent performance was observed for all four digesters, with VS removals greater than 

60%, CH4 yield between 0.1-0.3 m3CH4/kg VS added and CH4 production rates between 0.3-0.8 

m3CH4/m3 reactor-day. The digester operated at a 21-day SRT had the highest average CH4 yield 

and net energy production and would be favorable for COD removal and energy production. A 

42-day SRT would be recommended if the priority is for a low effluent TN concentration 

without supplemental carbon addition. 
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Table A.1: Characteristics of influent swine waste. Table indicates arithmetic average and 
standard deviation of data collected weekly over a 12-week period (n=12). 

Parameter Unit Measured value 

TS g/L 75.8 ± 15 

VS g/L 50.8 ± 11 

Alkalinity g CaCO3/L 2.9 ± 0.6 

TAN g NH4
+-N /L 0.2 ± 0.1 

Soluble TN g N/L 1.3 ± 0.2 

Soluble TP mg P/L 506 ± 109 

Soluble COD g COD/L 10.6 ± 3.4 

Total COD g COD/L 56.8 ± 8.8 

VFA*  g COD/L 3.7 ± 0.9 

pH   7.6 ± 0.4 

 

Table A.2: Average and standard deviations of performance data for four anaerobic digesters 
operated at varying OLR and SRT for 12 weeks (n=12). 

Parameter Unit 14-day 21-day 28-day 42-day 

OLR kg VS/m3-d 3.60 2.40 1.80 1.20 
TS g/L 40.7 ± 4.4 42.6 ± 4.9 41.5 ± 5.2 50.6 ± 6.9 

VS g/L 24.9 ± 2.4 25.1 ± 2.2 24.1 ± 2.7 28.1 ± 3.3 
Alkalinity g CaCO3/L 5.1 ± 1.6 4.8 ± 0.9 5.3 ± 0.9 5.7 ± 0.8 

TAN g NH4
+-N /L 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.1 0.5 ± 0.1 

Soluble TN g N/L 1.6 ± 0.4 1.4 ± 0.5 1.5 ± 0.5 1.6 ± 0.6 
Soluble TP mg P/L 340 ± 90 222 ± 59 177 ± 44 124 ± 25 

Soluble COD g COD/L 3.1 ± 0.5 2.6 ± 0.4 2.7 ± 0.3 2.8 ± 0.5 
Total COD g COD/L 39.1 ± 3.9 38.8 ± 4.3 37.6 ± 4.5 41.3 ± 2.9 

VFA* g COD/L 1.4 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 
pH  7.0 ± 0.1 7.1 ± 0.1 7.2 ± 0.1 7.3 ± 0.1 

 

Table A.3: Denitrification potential, denitrification rates and NO3
–-N concentrations in effluent 

during 8 hour microcosm test. 

Digester 
Denitrification 

potential 

Denitrification rate 
Effluent NO3

–-N 
Phase 1 Phase 2 Phase 3 

Day g COD/g N mg NO3
–-N / g VSS-hr mg NO3

—N/L 

14  5.6 49.4 17.6 2.3 129.2 

21  6.2 56.3 27.0 5.0 123.0 

28 2.5 47.2 25.2 1.6 112.7 

42  3.6 48.9 11.1 3.9 79.7 
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Figure A.1: Average performance data and p values for four 1.5 L reactors operated at varying 
OLR and SRT for 12 weeks. 

 
Figure A.2: Overall hydrolysis rates of swine waste solids in AD for four 1.5 L reactors operated 
at varying OLR and SRT for 12 weeks. 
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Figure A.3: Example of OUR curve during respirometer tests using the centrate from the 28 day 
SRT digester and MLVSS from NWRWRF. 

 
Figure A.4: Denitrification rate profiles for three phases using varying SRT digesters’ centrate as 
carbon source. 
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Figure A.5: Different COD fractions from varying SRT digesters’ centrates. sCOD = soluble 
COD, rbCOD = readily biodegradable COD and microcosm = theoretical biodegradable COD 
from microcosm study 
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Appendix B Chapter 3 Supplementary Information 

 

B.1 Volatile Solids Mass Balance 

To verify that the estimated concentration of biomass (Xm) in the tubular digester was 

accurate, a steady state mass balance on volatile solids (Xb) was developed: 

0 = Raf
R< Q = Saf& − Saf3 − dyafQ + d-abQ (Eq. B.1)

where Xbi is the influent VS concentration (3.64-7.98 g COD/L), Xbe is the effluent VS 

concentration (0.43-1.38 g COD/L) and KH is the kinetic hydrolysis rate (0.06-0.25/day). Xbi and 

Xbe values were calculated based on the influent and effluent VS concentrations assuming 1.42 g 

COD/g VS. Xb was estimated at 2.05-2.55 g COD/L. The VS mass balance verified that the Xm 

value estimated by the biomass in the digester mass balance was accurate because the VS mass 

balance came to zero.   

B.2 MCRT Frequency Distribution 

The MCRT frequency distribution at a 95 percentile was estimated after a 1000 Monte 

Carlo trial run using Oracle Crystal Ball. This distribution is illustrated below.   

 

Figure B.1: MCRT frequency distribution from the Monte Carlo simulation. Mean = 115 days, 

Median = 110 days, Minimum = 52 days, Maximum = 265 days, Standard Deviation = 33.56. 
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Appendix C Chapter 4 Supplementary Information 

 

C.1 Interview Questions and Answers for San Luis de Monteverde Farmers 

Table C.1: Interview questions and answers for four San Luis de Monteverde farmers using tubular digesters. 

How did you manage your livestock waste before you got a tubular digester? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

No treatment, went into 

pasture land 

No treatment, went into 

pasture land 

No treatment, went into pasture land No treatment, went into pasture land 

How many hours of cooking do you get each day with the biogas? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

Not used for cooking 2-4 hours for 3 people 3 hours for 4 people 9 hours for 6 people 

What kind of animals do you have and what are they for? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

Pigs to provide pork for 

the university 

Pigs for sale of piglets Pigs for biogas production, cows for 

milk 

Pigs for pork sale 

How many of each do you have and what type; female, male, lactating, piglets? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

4 pigs (1-4 months old) 14 pigs 

1 boar 

3 sows 

10 piglets 

4 pigs (1-3 months old) 

3 female 

1 male 

15 cows 

10 pigs (1-6 months old) 

6 female 

4 male 

How long do you spend cleaning the pig barn? 
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Table C.1 (Continued) 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

15 minutes 10-15 minutes 30 minutes 1 hour 

Does anyone else help with the maintenance of the biodigesters? If children, how old are the children? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

Only one male farmer 

cleans the barn 

Only one male farmer 

cleans the barn 

Wife and one son clean the barn Only one male farmer cleans the barn 

Do you give the animals any de-wormers? If yes, could you please tell me, or can I see the de-wormer you use.  

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

n/a Yes, gives dewormers 

(decomax) every 4-5 

months  

Yes, gives dewormers 

(oxitetraciclina) when pigs have 

symptoms such as vomiting  

Yes, gives dewormers when pigs show 

symptoms such as diarrhea  

How many times in a day are you tending to the pigs beside the time spent cleaning the barn? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

Cleans once a day in the 

morning 

Cleans once a day in the 

morning 

Cleans once a day in the morning Mostly cleans once a day but some 

days may also clean in the afternoon 

What do you do with the effluent? What crops are the farmers fertilizing with effluent? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

Flows into the cattle 

pasture land 

Uses effluent on root 

crops, corn and banana 

trees 

Uses effluent on fruit trees and cattle 

pasture land 

Uses effluent on root crops, corn and 

fruit trees 

How many times a week do you spend tending to your crops fertilized with the tubular digester effluent? 
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Table C.1 (Continued) 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

None After planting corn 

doesn’t tend to the soil 

very often 

n/a Depends on the season, during the dry 

season, husband and wife tend to the 

soil almost everyday 

Do you wash your of hands after work on the pig barns and tending to crops? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 

Yes because they milk 

the cows after cleaning 

pig barn 

Sometimes Sometimes Yes, prefers to use gloves 

 

C.2 Floccular Sludge Characteristics  

In addition to Digester 1, floccular sludge from Digesters 3 and 4 was also analyzed for TSS, VSS and SVI. Table C.2 is 

summarizes results from these two digesters.  

Table C.2: TSS, VSS and SVI from Digesters 3 and 4. 

Parameter Unit Digester 3 Digester 4 

SVI mL / g TSS 10.9 2.36 

TSS g TSS/L 88.0 420 

VSS g VSS/L 0.001 0.02 
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C.3 Tubular Digester Model  

A polynomial distribution of (oo)cysts was extrapolated to estimate the concentration of 

(oo)cysts in the tubular digester influent (oo)cysts/g TS. Figure C.1 illustrates the polynomial 

extrapolation of data for pigs (oo)cysts shedding for 19 days used to estimate values for G\ (0) for 

each digester. 

 
Figure C.1: Polynomial extrapolation of data for pigs (oo)cysts shedding for 19 days. 

C.4 Partitioning of C. parvum and G. lamblia during Anaerobic Digestion 

Over the course of three weeks, the partitioning of Cryptosporidium parvum oocysts and 

Giardia lamblia cysts in anaerobic digesters fed with swine manure was studied.  Six 50 mL 

microcosms were prepared using effluent from Reactor 1 (Chapter 4).  The microcosms were 

mixed by inverting at least ten times each day to simulate daily feeding and completely mixed 

conditions.  On each sampling day, three samples from the liquid supernatant and three samples 

from the settled sludge in one of the microcosms were collected, and (oo)cysts were enumerated 
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to determine partitioning.  It should be noted that these partitioning results assume that the 

recovery rate in the solid phase is the same as that in the liquid phase. 

Averages and standard deviations of partitioning results for each sampling day are shown 

in Table C.3.  Results for each sampling day varied considerably, as shown by the large standard 

deviations, however, the partitioning of both types of (oo)cysts was similar.  Despite the 

significant variations on each sampling day, a pattern did appear to be present over time.  On day 

0, most (oo)cysts were present in the solid phase, while the percentage of (oo)cysts in the liquid 

phase increased on the following day, this could be attributed to mixing.  On subsequent 

sampling days, the percentage of (oo)cysts in the solid phase slowly increased but did not return 

to the high level observed on day 0.  Again, this difference with the initial measurement may be 

due to daily mixing, while the slow increase in the solid phase could suggest that the (oo)cysts 

become more strongly associated with the solids over time. The changes over time can be seen in 

Figure C.2, in which linear regression lines show the trends from Day 1 to Day 21.  The results 

from Day 3 (highlighted in Table C.3) are not included in Figure C.2, since these results are 

drastically different from the pattern exhibited on other days.  Day 3 appears to be an outlier. 

Table C.3: Partitioning of C. parvum and G. lamblia (oo)cysts over time n=3. 

 
Cryptosporidium parvum oocysts Giardia lamblia cysts 

Day Liquid Phase Solid Phase Liquid Phase Solid Phase 

0 29 ± 24% 71 ± 18% 28 ± 26% 72 ± 23% 

1 46 ± 33% 54 ± 15% 56 ± 41% 44 ± 18% 

3 12 ± 3% 88 ± 41% 11 ± 0% 89 ± 47% 

7 39 ± 13% 61 ± 10% 39 ± 15% 61 ± 19% 

14 39 ± 11% 61 ± 24% 40 ± 13% 60 ± 32% 

21 35 ± 23% 65 ± 18% 35 ± 26% 65 ± 19% 

 



www.manaraa.com

156 
 

 
Figure C.2: Average partitioning in liquid and solid phases over time. (A) Partitioning of 
Cryptosporidium parvum oocysts; (B) partitioning of Giardia lamblia cysts.
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Appendix D Interview Questions and Answers for La Florida Farmers 

Table D.1: Interview questions and answers for dairy farmers in La Florida 

What kind of livestock do you have and what are they for? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

Dairy cows 

How many of each? What type, male, lactating, calves? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

Females = 

20 

Males = 1 

Calves = 5 

Females = 

25 

Males = 0 

Calves = 4 

Females = 25 

Males = 1 

Calves = 0 

Females = 45 

(10 pregnant) 

Males = 1 

Calves = 28-30 

30 total Females = 40 

Males = 0 

Calves = 6 

Females = 32 

Males = 0 

Calves = 20 

35 total 

Do you keep the animals in a barn or are they free range 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

All the cattle are free range, the cows are only in the barn twice a day for milking 

How do you maintain your cattle manure? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

Spreads manure on cattle 

pasture land as fertilizer. 

Does not handle the 

manure, washes it out of 

the barn after milking 

Composts 

manure that 

is collected 

after milking 

cows 

Puts manure in a wheel barrow after milking cows and disposes of it in the pasture land 

or 

Washes the manure from the barn after milking, manure drains into the cattle pasture 

land 
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Table D.1 (Continued) 

Do you ever come into contact with the manure after washing the barn or tending to soil? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

Doesn’t use manure on any crops and doesn’t tend to soil where the cows graze 

Do you use any energy source on your dairy farm? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

Uses electricity for milking and cooling the milk 

How much do you spend on electricity each month? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

₡ 85,000 

colones = 

$160 

₡ 70,000 

colones = 

$132 

₡ 70,000-

85,000 

colones = 

$132-160 

₡ 120,000 

colones = $226 

n/a ₡ 137,000 

colones = $258 

n/a n/a 

What energy source do you use at home for cooking? 

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer 5 Farmer 6 Farmer 7 Farmer 8 

Households use propane gas for cooking, costs about $20-40 a month 
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Appendix E List of Acronyms 

ADB Asian Development Bank 

ADM1 Anaerobic Digestion Model 1 

ALRI Acute Lower Respiratory Infections 

BOD5 Five day Biochemical Oxygen Demand 

C/N Carbon Nitrogen ratio 

CFD Computational Fluid Dynamic 

COD Chemical Oxygen Demand 

COPD Chronic Obstructive Pulmonary Disease 

CSTR Completely Stirred Tank Reactor 

DAPI 4', 6-diamidino-2-phenylindole 

F/M Food-to-Microorganism 

FITC Fluorescein Isothiocyanate 

FOG Fats, Oils and Grease 

GHG Greenhouse Gases 

HRT Hydraulic Retention Time 

LCFA Long Chain Fatty Acids 

LPG Liquefied Petroleum Gas 

MCRT Mean Cell Retention Time 

N/P Nitrogen Phosphorus ratio 

NGO Non-Governmental Organization 

NREL National Renewable Energy Laboratory 

OLR Organic Loading Rate 

PBS  Phosphate-Buffered Saline 

PI  Propidium Iodide 

PRC People’s Republic of China 

QMRA Quantitative Microbial Risk Assessment 

RANS Reynolds-Averaged Navier-Stokes 

RTD Residence Time Distribution 

SRT Solids Retention Time  

STP Standard Temperature Pressure 

SVI Sludge Volume Index 

TAN Total Ammonia Nitrogen 

TN Total Nitrogen 

TP Total Phosphorus 

TS Total Solids 

UASB Upflow Anaerobic Sludge Blanket 

VFA Volatile Fatty Acids 

VOC Volatile Organic Compounds 

VS Volatile Solids 

WHO World Health Organization 

WTE Waste to Energy  



www.manaraa.com

160 
 

Appendix F List of Equation Nomenclature 

 

F.1 List of Equation Nomenclature used in Chapter 3 

µt Eddy viscosity N·s/m2 
C Ensemble-averaged tracer concentration g KCl/L 
C’ Tracer fluctuation and flux g KCl/L 
Cd Tracer concentration in the digester g KCl/L 
Cin Influent tracer concentration g KCl/L 
Co Initial tracer concentration in the digester g KCl/L 
Cout Effluent tracer concentration g KCl/L 
Dt Eddy (turbulent) diffusivity m2/s 
k Turbulent kinetic energy J/Kg or m2/s2 
Kd Biomass cell decay coefficient day-1 

Km Maximum specific substrate utilization rate 
g COD utilized/ g biomass 
COD-day 

KS Biomass half saturation constant g COD/L 
ṁ Daily methane production rate g COD/day 
n Current day day 
p Reynolds-averaged pressure Pa 
Q Flow  L/day 
Sb Soluble substrate concentration g COD/L 
SCH4 Methane content % 
Sct, Schmidt number dimensionless 
t Time day or hour 
T Flow-through period minute 
ui Reynolds-averaged velocity m/s 
v Kinematic viscosity m2/s 
V Volume L 
xi Position m 
Xm Active digester biomass concentration g COD/L 
Xme Active biomass in effluent concentration g COD/L 
Xmi Active biomass in influent concentration g COD/L 

Ym Biomass yield coefficient  
g biomass COD/g COD 
utilized 

ε Turbulent kinetic energy dissipation rate m2/s3 
ρ Density Kg/m3 

 

F.2 List of Equation Nomenclature used in Chapter 4 

C0(t) (Oo)cysts concentration in the influent (oo)cysts/L 
CL Percent viable (oo)cysts measured at time t % 
Ct (Oo)cysts concentration in the digester (oo)cysts/L 
Ct+∆t Concentration of (oo)cysts in the tubular digester 

effluent 
(oo)cysts/L 

CV Percent of viable (oo)cysts at time t=0 days % 
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k Inactivation rate constant day-1 
Kd Distribution coefficient  L/g TS 
N Total number of (oo)cysts in the digester (oo)cysts 
Q Flow rate L/day 
S Degree of adsorption of (oo)cysts to the solids (oo)cysts/g TS 
t Time day 
TSF TS concentration in the digesters’ floccular sludge 

layer 
g TS/L 

V Tubular digester working volume L 
 

F.3 List of Equation Nomenclature used in Chapter 5 

Ade Application rate of tubular digester effluent L/ha 

Arm Application rate of raw cattle waste Mg/ha 
Cc (Oo)cysts concentration on contaminated leafy crops (oo)cysts/kg food 
Cde (Oo)cysts concentration in tubular digester effluent (oo)cysts/L 
Cep (Oo)cysts concentration at each exposure pathway (oo)cysts/exposure pathway 
Cf Fomite (oo)cysts concentration (oo)cysts/fomite 
Ci Concentration of soil ingested during occupational 

activities or leafy crops consumed per day 
g soil/day or g leafy crops/day 

Cp (Oo)cysts concentration per hectare (oo)cysts/ha 
Crm (Oo)cysts  concentration in the raw cattle and swine 

waste  
(oo)cysts/g TS 

Cs (Oo)cysts concentration in soil  (oo)cysts/kg soil 
d Dose  (oo)cysts/dose 
Dr (Oo)cysts dilution ratio in the runoff water  
Ds Soil dilution ratio L of digester effluent/ g of soil 
Fr Fraction of (oo)cysts available for runoff  
Frm Raw waste transferred to a fomite g/fomite 
Kc (Oo)cysts inactivation rates on leafy crops log removal/day 
Kf (Oo)cysts inactivation rates on a fomite log removal/day 
Ks (Oo)cysts inactivation rates in soil log removal/day 
Kw (Oo)cysts inactivation rates in water log removal/day 
r Probability of a single agent causing infection  
Tc Percent attachment of (oo)cysts from the water to 

crops 
% 

Th  Percent transfer of (oo)cysts from fomite to hand % 
Tm Percent transfer of (oo)cysts from hand to mouth % 
Tr  Percentage of (oo)cysts once applied to the soil will 

be transferred to the runoff water 
% 

Tw Percentage of soil particles that remain on the crops 
after washing 

% 
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